
Data Acquisition Toolbox™
User's Guide

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Data Acquisition Toolbox™ User's Guide
© COPYRIGHT 2005–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
May 1999 First printing New for Version 1
November 2000 Second printing Revised for Version 2 (Release 12)
June 2001 Third printing Revised for Version 2.1 (Release 12.1)
July 2002 Online only Revised for Version 2.2 (Release 13)
June 2004 Online only Revised for Version 2.5 (Release 14)
October 2004 Online only Revised for Version 2.5.1 (Release 14SP1)
March 2005 Online only Revised for Version 2.6 (Release 14SP2)
September 2005 Online only Revised for Version 2.7 (Release 14SP3)
October 2005 Reprint Version 2.1 (Notice updated)
November 2005 Online only Revised for Version 2.8 (Release 14SP3+)
March 2006 Fourth printing Revised for Version 2.8.1 (Release 2006a)
September 2006 Online only Revised for Version 2.9 (Release 2006b)
March 2007 Online only Revised for Version 2.10 (Release 2007a)
May 2007 Fifth printing Minor revision for Version 2.10
September 2007 Online only Revised for Version 2.11 (Release 2007b)
March 2008 Online only Revised for Version 2.12 (Release 2008a)
October 2008 Online only Revised for Version 2.13 (Release 2008b)
March 2009 Online only Revised for Version 2.14 (Release 2009a)
September 2009 Online only Revised for Version 2.15 (Release 2009b)
March 2010 Online only Revised for Version 2.16 (Release 2010a)
September 2010 Online only Revised for Version 2.17 (Release 2010b)
April 2011 Online only Revised for Version 2.18 (Release 2011a)
September 2011 Online only Revised for Version 3.0 (Release 2011b)
March 2012 Online only Revised for Version 3.1 (Release 2012a)
September 2012 Online only Revised for Version 3.2 (Release 2012b)
March 2013 Online only Revised for Version 3.3 (Release 2013a)
September 2013 Online only Revised for Version 3.4 (Release 2013b)
March 2014 Online only Revised for Version 3.5 (Release 2014a)
October 2014 Online Only Revised Version 3.6 (Release 2014b)
March 2015 Online only Revised for Version 3.7 (R2015a)
September 2015 Online only Revised for Version 3.8 (Release 2015b)
March 2016 Online only Revised for Version 3.9 (Release 2016a)
September 2016 Online only Revised for Version 3.10 (Release 2016b)
March 2017 Online only Revised for Version 3.11 (Release 2017a)
September 2017 Online only Revised for Version 3.12 (Release 2017b)
March 2018 Online only Revised for Version 3.13 (Release 2018a)
September 2018 Online only Revised for Version 3.14 (Release 2018b)
March 2019 Online only Revised for Version 4.0 (Release 2019a)
September 2019 Online only Revised for Version 4.0.1 (Release 2019b)
March 2020 Online only Revised for Version 4.1 (Release 2020a)
September 2020 Online only Revised for Version 4.2 (Release 2020b)
March 2021 Online only Revised for Version 4.3 (Release 2021a)

Introduction to Data Acquisition
1

Data Acquisition Toolbox Product Description . 1-2

Product Capabilities . 1-3
Understanding Data Acquisition Toolbox . 1-3
Supported Hardware . 1-3

Anatomy of a Data Acquisition Experiment . 1-4
System Setup . 1-4
Calibration . 1-4
Trials . 1-4

Data Acquisition System . 1-5
Overview . 1-5
Data Acquisition Hardware . 1-6
Sensors . 1-7
Signal Conditioning . 1-9
The Computer . 1-11
Software . 1-11

Analog Input Subsystem . 1-13
Function of the Analog Input Subsystem . 1-13
Sampling . 1-13
Quantization . 1-15
Channel Configuration . 1-18
Transferring Data from Hardware to System Memory 1-20

Making Quality Measurements . 1-22
What Do You Measure? . 1-22
Accuracy and Precision . 1-22
Noise . 1-25
Matching the Sensor Range and A/D Converter Range 1-25
How Fast Should a Signal Be Sampled? . 1-26

Selected Bibliography . 1-29

Using Data Acquisition Toolbox Software
2

Installation Information . 2-2
Prerequisites . 2-2
Toolbox Installation . 2-2

v

Contents

Hardware and Driver Installation . 2-2

Access Your Hardware . 2-3
Connect to Your Hardware . 2-3
Examine Your Hardware Resources . 2-3
Acquire Audio Data . 2-4
Generate Audio Data . 2-4
Acquire and Generate Digital Data . 2-5

Introduction to the DataAcquisition Interface
3

The DataAcquisition Object . 3-2

Get Command-Line Help . 3-3

Using the DataAcquisition Interface
4

Interface Workflow . 4-2
Working a DataAcquisition . 4-2
DataAcquisition Interface and Data Acquisition Toolbox 4-2

Digital Input and Output . 4-3

Discover Hardware Devices . 4-4

Create a DataAcquisition Interface . 4-5

Channel Properties . 4-7
Get Property Information . 4-7
All Channels . 4-7
Analog Input and Output Channels . 4-8
Other Analog Measurements . 4-9
Digital Channels . 4-13
Counter Channels . 4-14
Audio Channels . 4-16
Function Generator Channels . 4-16

Support Package Installer
5

Install Hardware Support Package for Vendor Support 5-2
Install Support Packages . 5-2
Update or Uninstall Support Packages . 5-2

vi Contents

Analog Input and Output
6

Acquire Data in the Foreground . 6-2

Acquire Data from Multiple Channels . 6-3

Acquire Data in the Background . 6-4

Acquire Bridge Measurements . 6-5

Acquire Sound Pressure Data . 6-7

Acquire IEPE Data . 6-9

Generate Signals in the Foreground . 6-11

Generate Signals on Multiple Channels . 6-12

Generate Signals in the Background . 6-13

Generate Signals in the Background Continuously 6-14

Acquire Data and Generate Signals Simultaneously 6-16

Acquire Data with the Analog Input Recorder . 6-17

Generate Signals with the Analog Output Generator 6-21

Analog Devices Active Learning Module
7

Analog Devices ADALM1000 Hardware . 7-2

Generate and Measure Signals with Analog Devices ADALM1000 7-3
Updated Function Syntax . 7-3
Source Voltage and Measure Current . 7-3
Generate a Pulse . 7-4
Generate Waveforms . 7-5

Counter Input and Output
8

Analog and Digital Counters . 8-2

Acquire Counter Input Data . 8-3
Add Counter Input Channel . 8-3

vii

Acquire a Single Count . 8-3
Acquire a Single Frequency Count . 8-4
Acquire Counter Input Data in the Foreground . 8-4

Generate Pulse Data on a Counter Channel . 8-6
Add Counter Output Channels . 8-6
Generate Pulses on a Counter Output Channel . 8-6

Digital Operations
9

Digital Channels . 9-2
Digital Clocked Operations . 9-2
Access Digital Subsystem Information . 9-2

Acquire Non-Clocked Digital Data . 9-4

Acquire Digital Data Using a Shared Clock . 9-5

Acquire Digital Data Using an External Clock . 9-6

Acquire Digital Data Using a Counter Output Channel as External Clock
. 9-8

Generate a Clock Using a Counter Output Channel 9-8
Use Counter Clock to Acquire Clocked Digital Data 9-9

Acquire Digital Data Using an External Clock via Chassis PFI Terminal
. 9-11

Acquire Digital Data in Hexadecimal Values . 9-12

Generate Non-Clocked Digital Data . 9-13

Generate Digital Output Using Decimal Data Across Multiple Lines . . . 9-14

Generate and Acquire Data on Bidirectional Channels 9-15

Generate Signals on Both Analog and Digital Channels 9-16

Multichannel Audio
10

Audio Input and Output . 10-2
Multichannel Audio Scan Rate . 10-2
Audio Measurement Range . 10-2
Acquire Audio Data . 10-2

viii Contents

Waveform Function Generation
11

Digilent Analog Discovery Devices . 11-2

Digilent Function Waveform Generator Channels 11-3

Waveform Types . 11-5

Generate a Standard Waveform Using Function Waveform Generator
Channels . 11-8

Triggers and Clocks
12

Trigger Connections . 12-2
When to Use Triggers . 12-2
External Triggering . 12-2

Acquire Voltage Data Using a Digital Trigger . 12-4

Clock Connections . 12-5
When to Use Clocks . 12-5
Import Scan Clock from External Source . 12-5
Export Scan Clock to External System . 12-5

Synchronization
13

Synchronization . 13-2
Shared Triggers and Shared Scan Clocks . 13-2
Source and Destination Devices . 13-3
Automatic Synchronization . 13-4
Synchronization Scenarios . 13-4

Multiple-Device Synchronization Using USB or PXI Devices 13-7
Acquire Synchronized Data Using USB Devices 13-7
Synchronize Counter Outputs from Multiple Devices 13-8
Synchronize DSA PXI Devices Using AutoSyncDSA 13-8
Acquire Synchronized Data Using PXI Devices . 13-9

Synchronize with PFI on CompactDAQ Chassis Without Terminals . . . 13-11

Multiple-Chassis Synchronization with CompactDAQ Devices 13-12

Synchronize DSA Devices . 13-13
PXI DSA Devices . 13-13
Hardware Restrictions . 13-13

ix

PCI DSA Devices . 13-14
Synchronize DSA PCI Devices . 13-14
Handle Filter Delays with DSA Devices . 13-15

Transition Your Code to New Interfaces
14

Transition Your Code from Session to DataAcquisition Interface 14-2
Transition Common Workflow Commands . 14-2
Acquire Analog Data . 14-3
Use Triggers . 14-3
Initiate an Operation When Number of Scans Exceeds Specified Value

. 14-4
Analog Output Generator Code . 14-5

Functions
15

Apps
16

Blocks
17

Troubleshooting Your Hardware
A

Troubleshooting Tips . A-2
Find Devices and Create a DataAcquisition Interface A-2
Is My NI-DAQ Driver Supported? . A-3
Why Doesn’t My NI Hardware Work? . A-3
Why Was My DataAcquisition Deleted? . A-4
Cannot Find Hardware Vendor . A-4
Cannot Find Devices . A-4
What Is a Reserved Hardware Error? . A-5
Network Device Appears Unsupported . A-5
ADC Overrun Error with External Clock . A-6
Cannot Add Clock Connection to PXI Devices . A-6
Cannot Complete Long Foreground Acquisition . A-6
Cannot Use PXI 4461 and 4462 Together . A-6

x Contents

Cannot Get Correct Scan Rate with Digilent Devices A-6
Cannot Simultaneously Acquire and Generate with myDAQ Devices A-6
Simultaneous Analog Input and Output Not Synchronized Correctly A-7
Counter Single Scan Returns NaN . A-7
External Clock Will Not Trigger Scan . A-7
Why Does My S/PDIF Device Time Out? . A-7
MOTU Device Not Working Correctly . A-7

Contact MathWorks for Technical Support . A-8

Hardware Limitations by Vendor
B

Limitations by Vendor . B-2

National Instruments Hardware Limitations . B-3

Digilent Analog Discovery Hardware Limitations B-4

Measurement Computing Hardware Limitations . B-5

Analog Devices ADALM1000 Limitations . B-6

Examples by Vendor . B-7

Analog Devices ADALM1000 Examples . B-8

Digilent Analog Discovery Hardware Examples . B-9

Measurement Computing Hardware Examples . B-10

National Instruments Hardware Examples . B-11
Getting Started and Device Discovery . B-11
Analog Input and Output . B-11
Digital Input and Output . B-11
Counters and Timers . B-11
Simultaneous and Synchronized Operations . B-12
Simulink Data Acquisition . B-12

Windows Sound Card Examples . B-13

Data Acquisition Toolbox Examples
18

Getting Started with NI Devices . 18-3

Getting Started with MCC Devices . 18-7

xi

Discover NI Devices . 18-10

Discover MCC Devices . 18-12

Acquire Data Using NI Devices . 18-14

Acquire Continuous and Background Data Using NI Devices 18-18

Acquire Data from Multiple Channels using an MCC Device 18-22

Acquire Data From an Accelerometer . 18-25

Measure Strain Using an Analog Bridge Sensor 18-27

Acquire Temperature Data From a Thermocouple 18-30

Acquire Temperature Data From an RTD . 18-32

Acquire and Analyze Sound Pressure Data From an IEPE Microphone
. 18-35

Acquire and Analyze Noisy Clock Signals . 18-39

Generate Voltage Signals Using NI Devices . 18-49

Generate Signals on NI Devices That Output Current 18-52

Generate Continuous and Background Signals Using NI Devices 18-55

Acquire Data and Generate Signals at the Same Time 18-58

Log Analog Input Data to a File Using NI Devices 18-62

Getting Started Acquiring Data with Digilent Analog Discovery 18-66

Getting Started Generating Data with Digilent Analog Discovery 18-69

Acquiring and Generating Data at the Same Time with Digilent Analog
Discovery . 18-71

Generate Standard Periodic Waveforms Using Digilent Analog Discovery
. 18-74

Generate Arbitrary Periodic Waveforms Using Digilent Analog Discovery
. 18-77

Acquire Continuous Audio Data . 18-81

Generate Audio Signals . 18-84

Generating Multichannel Audio . 18-86

Capture Data with Software-Analog Triggering 18-90

xii Contents

Count Pulses on a Digital Signal Using NI Devices 18-99

Measure Frequency Using NI Devices . 18-102

Measure Pulse Width Using NI Devices . 18-104

Generate Pulse Width Modulated Signals Using NI Devices 18-106

Measure Angular Position with an Incremental Rotary Encoder 18-108

Control Stepper Motor Using Digital Outputs 18-113

Communicate with I2C Devices and Analyze Bus Signals Using Digital IO
. 18-116

Synchronize NI PCI Devices Using RTSI . 18-123

Start a Multi-Trigger Acquisition on an External Event 18-126

Perform Live Acquisition, Signal Processing, and Generation 18-128

Perform Spectral Analysis on Live Data . 18-130

Acquire Data from Two Devices at Different Rates 18-134

Characterize an LED with ADALM1000 . 18-137

Estimate the Transfer Function of a Circuit with ADALM1000 18-141

Create an App for Analog Triggered Data Acquisition 18-148

Create an App for Analog Triggered Data Acquisition by Using Stateflow
Charts . 18-151

Create an App for Live Data Acquisition . 18-155

Acquire Data Using NI FieldDAQ Device . 18-157

Create an Echometer Using Audio Measurements 18-160

xiii

Introduction to Data Acquisition

• “Data Acquisition Toolbox Product Description” on page 1-2
• “Product Capabilities” on page 1-3
• “Anatomy of a Data Acquisition Experiment” on page 1-4
• “Data Acquisition System” on page 1-5
• “Analog Input Subsystem” on page 1-13
• “Making Quality Measurements” on page 1-22
• “Selected Bibliography” on page 1-29

1

Data Acquisition Toolbox Product Description
Connect to data acquisition cards, devices, and modules

Data Acquisition Toolbox provides apps and functions for configuring data acquisition hardware,
reading data into MATLAB® and Simulink®, and writing data to DAQ analog and digital output
channels. The toolbox supports a variety of DAQ hardware, including USB, PCI, PCI Express®, PXI®,
and PXI-Express devices, from National Instruments® and other vendors.

The toolbox apps let you interactively set up a data acquisition interface and configure it to your
hardware. You can then generate equivalent MATLAB code to automate your data acquisition.
Toolbox functions give you the flexibility to control the analog input, analog output, counter/timer,
and digital I/O subsystems of a DAQ device. You can access device-specific features and synchronize
data acquired from multiple devices.

You can analyze data as you acquire it or save it for post-processing. You can also automate tests and
make iterative updates to your test setup based on analysis results.

1 Introduction to Data Acquisition

1-2

Product Capabilities
In this section...
“Understanding Data Acquisition Toolbox” on page 1-3
“Supported Hardware” on page 1-3

Understanding Data Acquisition Toolbox
Data Acquisition Toolbox enables you to:

• Configure external hardware devices.
• Read data into MATLAB for immediate analysis.
• Generate signals on device output channels.

Data Acquisition Toolbox is a collection of functions, blocks, apps, and a MEX-file (shared library)
built on the MATLAB technical computing environment. The toolbox and its support packages also
provide several dynamic link libraries (DLLs) called adaptors, which enable you to interface with
specific hardware. The toolbox provides you with these main features:

• A framework for bringing live, measured data into the MATLAB workspace using PC-compatible,
plug-in data acquisition hardware

• Support for analog input (AI), analog output (AO), and digital I/O (DIO) subsystems, including
simultaneous analog I/O conversions

• Support for these popular hardware vendors/devices:

• National Instruments CompactDAQ chassis
• National Instruments boards that use NI-DAQmx software
• Microsoft® Windows® sound cards
• Digilent® Analog Discovery™ hardware
• Measurement Computing™ hardware
• Analog Devices® ADALM1000
• Measurement Computingdevices

• Event-driven acquisitions

Supported Hardware
The list of hardware supported by Data Acquisition Toolbox can change in each release.

To see the full list of hardware that the toolbox supports, visit the supported hardware page at
https://www.mathworks.com/hardware-support/data-acquistion-software.html.

 Product Capabilities

1-3

https://www.mathworks.com/hardware-support/data-acquistion-software.html

Anatomy of a Data Acquisition Experiment
In this section...
“System Setup” on page 1-4
“Calibration” on page 1-4
“Trials” on page 1-4

System Setup
The first step in any data acquisition experiment is to install the hardware and software. Hardware
installation consists of plugging a board into your computer or installing modules into an external
chassis. Software installation consists of loading hardware drivers and application software onto your
computer. After the hardware and software are installed, you can attach your sensors.

Calibration
After the hardware and software are installed and the sensors are connected, the data acquisition
hardware should be calibrated. Calibration consists of providing a known input to the system and
recording the output. For many data acquisition devices, calibration can be easily accomplished with
software provided by the vendor.

Trials
After the hardware is set up and calibrated, you can begin to acquire data. You might think that if you
completely understand the characteristics of the signal you are measuring, then you should be able to
configure your data acquisition system and acquire the data.

However, your sensor might be picking up unacceptable noise levels and require shielding, or you
might need to run the device at a higher rate, or perhaps you need to add an antialias filter to remove
unwanted frequency components.

These effects act as obstacles between you and a precise, accurate measurement. To overcome these
obstacles, you need to experiment with different hardware and software configurations. In other
words, you need to perform multiple data acquisition trials.

1 Introduction to Data Acquisition

1-4

Data Acquisition System
In this section...
“Overview” on page 1-5
“Data Acquisition Hardware” on page 1-6
“Sensors” on page 1-7
“Signal Conditioning” on page 1-9
“The Computer” on page 1-11
“Software” on page 1-11

Overview
Data Acquisition Toolbox, with the MATLAB technical computing environment, gives you the ability to
generate, measure. and analyze physical phenomena. The purpose of any data acquisition system is
to provide you with the tools and resources to do this.

You can think of a data acquisition system as a collection of software and hardware that connects
your program to the physical world. A typical data acquisition system consists of these components:

Components Description
Data acquisition
hardware

At the heart of any data acquisition system lies the data acquisition
hardware. The main function of this hardware is to convert analog signals
to digital signals, and to convert digital signals to analog signals.

Sensors and actuators
(transducers)

Sensors and actuators are types of transducers. A transducer is a device
that converts input energy of one form into output energy of another
form. For example, a microphone is a sensor that converts sound energy
(in the form of pressure) into electrical energy, while a loudspeaker is an
actuator that converts electrical energy into sound energy.

Signal conditioning
hardware

Sensor signals are often incompatible with data acquisition hardware. To
overcome this incompatibility, the signal must be conditioned. For
example, you might need to condition an input signal by amplifying it or
by removing unwanted frequency components. Output signals might need
conditioning as well.

Computer The computer provides a processor, a system clock, a bus to transfer data,
and memory and disk space to store data.

Software Data acquisition software allows you to exchange information between the
computer and the hardware. For example, typical software allows you to
configure the sampling rate of your board, and acquire a predefined
amount of data.

The following diagram illustrates the data acquisition components, and their relationships to each
other.

 Data Acquisition System

1-5

https://www.mathworks.com/discovery/data-acquisition-system.html

The figure depicts the two important features of a data acquisition system:

• Signals are input to a sensor, conditioned, converted into bits that a computer can read, and
analyzed to extract meaningful information.

For example, sound level data is acquired from a microphone, amplified, digitized by a sound card,
and stored in the MATLAB workspace for subsequent analysis of frequency content.

• Data from a computer is converted into an analog signal and output to an actuator.

For example, a vector of data in the MATLAB workspace is converted to an analog signal by a
sound card and output to a loudspeaker.

Data Acquisition Hardware
Data acquisition hardware is either internal and installed directly into an expansion slot inside your
computer, or external and connected to your computer through an external cable, which is typically a
USB cable.

At the simplest level, data acquisition hardware is characterized by the subsystems that comprise it.
A subsystem is a component of your data acquisition hardware that performs a specialized task.
Common subsystems include

• Analog input
• Analog output
• Digital input/output
• Counter/timer

Hardware devices that consist of multiple subsystems, such as the one depicted below, are called
multifunction boards.

1 Introduction to Data Acquisition

1-6

Analog Input Subsystems

Analog input subsystems convert real-world analog input signals from a sensor into bits that can be
read by your computer. Perhaps the most common of all subsystems, they are typically available in
multichannel devices offering 12 or 16 bits of resolution.

Analog input subsystems are also referred to as AI subsystems, A/D converters, or ADCs.

Analog Output Subsystems

Analog output subsystems convert digital data stored on your computer to a real-world analog signal.
These subsystems perform the inverse conversion of analog input subsystems. Typical acquisition
boards offer two output channels with 12 bits of resolution, with special hardware available to
support multiple channel analog output operations.

Analog output subsystems are also referred to as AO subsystems, D/A converters, or DACs.

Digital Input/Output Subsystems

Digital input/output (DIO) subsystems are designed to input and output digital values (logic levels) to
and from hardware. These values are typically handled either as single bits or lines, or as a port,
which typically consists of eight lines.

While most popular data acquisition cards include some digital I/O capability, it is usually limited to
simple operations. Special dedicated hardware is often necessary for performing advanced digital I/O
operations.

Counter/Timer Subsystems

Counter/timer (C/T) subsystems are used for event counting, frequency and period measurement, and
pulse train generation.

Sensors
A sensor converts the physical phenomena of interest into signals that are input to your data
acquisition hardware. There are two main types of sensors based on the output they produce: digital
sensors and analog sensors.

Digital sensors produce an output signal that is a digital representation of the input signal, and has
discrete values of magnitude measured at discrete times. A digital sensor must output logic levels
that are compatible with the digital receiver. Some standard logic levels include transistor-transistor
logic (TTL) and emitter-coupled logic (ECL). Examples of digital sensors include switches and position
encoders.

 Data Acquisition System

1-7

Analog sensors produce an output signal that is directly proportional to the input signal, and is
continuous in both magnitude and time. Most physical variables such as temperature, pressure, and
acceleration are continuous in nature and are readily measured with an analog sensor. For example,
the temperature of an automobile cooling system and the acceleration produced by a child on a swing
both vary continuously.

The sensor you use depends on the phenomena you are measuring. Some common analog sensors
and the physical variables they measure are listed below.

Common Analog Sensors

Sensor Physical Variable
Accelerometer Acceleration
Microphone Pressure
Pressure gauge Pressure
Resistive temperature device (RTD) Temperature
Strain gauge Force
Thermocouple Temperature

When choosing the best analog sensor to use, you must match the characteristics of the physical
variable you are measuring with the characteristics of the sensor. The two most important sensor
characteristics are:

• The sensor output
• The sensor bandwidth

Note You can use thermocouples and accelerometers without performing linear conversions.

Sensor Output

The output from a sensor can be an analog signal or a digital signal, and the output variable is usually
a voltage although some sensors output current.

Current Signals

Current is often used to transmit signals in noisy environments because it is much less affected by
environmental noise. The full scale range of the current signal is often either 4-20 mA or 0-20 mA. A
4-20 mA signal has the advantage that even at minimum signal value, there should be a detectable
current flowing. The absence of this indicates a wiring problem.

Voltage Signals

The most commonly interfaced signal is a voltage signal. For example, thermocouples, strain gauges,
and accelerometers all produce voltage signals. There are three major aspects of a voltage signal that
you need to consider:

• Amplitude

If the signal is less than a few millivolts, you might need to amplify it. If it is greater than the
maximum range of your analog input hardware (typically ±10 V), you must divide the signal down
using a resistor network.

1 Introduction to Data Acquisition

1-8

The amplitude is related to the sensitivity (resolution) of your hardware. Refer to Accuracy and
Precision on page 1-22 for more information about hardware sensitivity.

• Frequency

Whenever you acquire data, you should decide the highest frequency you want to measure.

The highest frequency component of the signal determines how often you should sample the input.
If you have more than one input, but only one analog input subsystem, then the overall sampling
rate goes up in proportion to the number of inputs. Higher frequencies might be present as noise,
which you can remove by filtering the signal before it is digitized.

If you sample the input signal at least twice as fast as the highest frequency component, then that
signal will be uniquely characterized. However, this rate might not mimic the waveform very
closely. For a rapidly varying signal, you might need a sampling rate of roughly 10 to 20 times the
highest frequency to get an accurate picture of the waveform. For slowly varying signals, you need
only consider the minimum time for a significant change in the signal.

The frequency is related to the bandwidth of your measurement. Bandwidth is discussed in
“Sensor Bandwidth” on page 1-9.

• Duration

How long do you want to sample the signal for? If you are storing data to memory or to a disk file,
then the duration determines the storage resources required. The format of the stored data also
affects the amount of storage space required. For example, data stored in ASCII format takes
more space than data stored in binary format.

Sensor Bandwidth

In a real-world data acquisition experiment, the physical phenomena you are measuring have
expected limits. For example, the temperature of your automobile's cooling system varies
continuously between its low limit and high limit. The temperature limits, as well as how rapidly the
temperature varies between the limits, depends on several factors including your driving habits, the
weather, and the condition of the cooling system. The expected limits might be readily approximated,
but there are an infinite number of possible temperatures that you can measure at a given time. As
explained in Quantization on page 1-15, these unlimited possibilities are mapped to a finite set of
values by your data acquisition hardware.

The bandwidth is given by the range of frequencies present in the signal being measured. You can
also think of bandwidth as being related to the rate of change of the signal. A slowly varying signal
has a low bandwidth, while a rapidly varying signal has a high bandwidth. To properly measure the
physical phenomena of interest, the sensor bandwidth must be compatible with the measurement
bandwidth.

You might want to use sensors with the widest possible bandwidth when making any physical
measurement. This is the one way to ensure that the basic measurement system is capable of
responding linearly over the full range of interest. However, the wider the bandwidth of the sensor,
the more you must be concerned with eliminating sensor response to unwanted frequency
components.

Signal Conditioning
Sensor signals are often incompatible with data acquisition hardware. To overcome this
incompatibility, the sensor signal must be conditioned. The type of signal conditioning required

 Data Acquisition System

1-9

depends on the sensor you are using. For example, a signal might have a small amplitude and require
amplification, or it might contain unwanted frequency components and require filtering. Common
ways to condition signals include

• Amplification
• Filtering
• Electrical isolation
• Multiplexing
• Excitation source

Amplification

Low-level – less than approximately 100 millivolts – usually need to be amplified. High-level signals
might also require amplification depending on the input range of the analog input subsystem.

For example, the output signal from a thermocouple is small and must be amplified before it is
digitized. Signal amplification allows you to reduce noise and to make use of the full range of your
hardware thereby increasing the resolution of the measurement.

Filtering

Filtering removes unwanted noise from the signal of interest. A noise filter is used on slowly varying
signals such as temperature to attenuate higher frequency signals that can reduce the accuracy of
your measurement.

Rapidly varying signals such as vibration often require a different type of filter known as an
antialiasing filter. An antialiasing filter removes undesirable higher frequencies that might lead to
erroneous measurements.

Electrical Isolation

If the signal of interest contains high-voltage transients that could damage the computer, then the
sensor signals should be electrically isolated from the computer for safety purposes.

You can also use electrical isolation to make sure that the readings from the data acquisition
hardware are not affected by differences in ground potentials. For example, when the hardware
device and the sensor signal are each referenced to separate grounds, problems occur if there is a
potential difference between the two grounds. This difference can lead to a ground loop, which might
cause erroneous measurements. Using electrically isolated signal conditioning modules eliminates
the ground loop and ensures that the signals are accurately represented.

Multiplexing

A common technique for measuring several signals with a single measuring device is multiplexing.

Signal conditioning devices for analog signals often provide multiplexing for use with slowly changing
signals such as temperature. This is in addition to any built-in multiplexing on the DAQ board. The
A/D converter samples one channel, switches to the next channel and samples it, switches to the next
channel, and so on. Because the same A/D converter is sampling many channels, the effective
sampling rate of each individual channel is inversely proportional to the number of channels sampled.

You must take care when using multiplexers so that the switched signal has sufficient time to settle.
Refer to Noise on page 1-25 for more information about settling time.

1 Introduction to Data Acquisition

1-10

Excitation Source

Some sensors require an excitation source to operate. For example, strain gauges and resistive
temperature devices (RTDs) require external voltage or current excitation. Signal conditioning
modules for these sensors usually provide the necessary excitation. RTD measurements are usually
made with a current source that converts the variation in resistance to a measurable voltage.

The Computer
The computer provides a processor, a system clock, a bus to transfer data, and memory and disk
space to store data.

The processor controls how fast data is accepted by the converter. The system clock provides time
information about the acquired data. Knowing that you recorded a sensor reading is generally not
enough. You might also need to know when that measurement occurred.

Data is transferred from the hardware to system memory via dynamic memory access (DMA) or
interrupts. DMA is hardware controlled and therefore extremely fast. Interrupts might be slow
because of the latency time between when a board requests interrupt servicing and when the
computer responds. The maximum acquisition rate is also determined by the computer's bus
architecture. Refer to How Are Acquired Samples Clocked? on page 1-17 for more information about
DMA and interrupts.

Software
Regardless of the hardware you are using, you must send information to the hardware and receive
information from the hardware. You send configuration information to the hardware such as the
sampling rate, and receive information from the hardware such as data, status messages, and error
messages. You might also need to supply the hardware with information so that you can integrate it
with other hardware and with computer resources. This information exchange is accomplished with
software.

There are two kinds of software:

• Driver software
• Application software

For example, suppose you are using Data Acquisition Toolbox software with a National Instruments
board and its associated driver. The following diagram shows the relationship between you, the driver
software, and the application software.

 Data Acquisition System

1-11

The diagram illustrates that you supply information to the hardware, and you receive information
from the hardware.

Driver Software

For a data acquisition device, there is associated driver software that you must use. Driver software
allows you to access and control your hardware. Among other things, basic driver software allows you
to

• Transfer data to and from the board
• Control the rate at which data is acquired
• Integrate the data acquisition hardware with computer resources such as processor interrupts,

DMA, and memory
• Integrate the data acquisition hardware with signal conditioning hardware
• Access multiple subsystems on a given data acquisition board
• Access multiple data acquisition boards

Application Software

Application software provides a convenient front end to the driver software. Basic application
software allows you to

• Report relevant information such as the number of samples acquired
• Generate events
• Manage the data stored in computer memory
• Condition a signal
• Plot acquired data

MATLAB and Data Acquisition Toolbox software provide you with these capabilities, and provide tools
that let you perform analysis on the data.

1 Introduction to Data Acquisition

1-12

Analog Input Subsystem
In this section...
“Function of the Analog Input Subsystem” on page 1-13
“Sampling” on page 1-13
“Quantization” on page 1-15
“Channel Configuration” on page 1-18
“Transferring Data from Hardware to System Memory” on page 1-20

Function of the Analog Input Subsystem
Many data acquisition hardware devices contain one or more subsystems that convert (digitize) real-
world sensor signals into numbers your computer can read. Such devices are called analog input
subsystems (AI subsystems, A/D converters, or ADCs). After the real-world signal is digitized, you can
analyze it, store it in system memory, or store it to a disk file.

The function of the analog input subsystem is to sample and quantize the analog signal using one or
more channels. You can think of a channel as a path through which the sensor signal travels. Typical
analog input subsystems have eight or 16 input channels available to you. After data is sampled and
quantized, it must be transferred to system memory.

Analog signals are continuous in time and in amplitude (within predefined limits). Sampling takes a
“snapshot” of the signal at discrete times, while quantization divides the voltage (or current) value
into discrete amplitudes.

Sampling
Sampling takes a snapshot of the sensor signal at discrete times. For most applications, the time
interval between samples is kept constant (for example, sample every millisecond) unless externally
clocked.

For most digital converters, sampling is performed by a sample and hold (S/H) circuit. An S/H circuit
usually consists of a signal buffer followed by an electronic switch connected to a capacitor. The
operation of an S/H circuit follows these steps:

1 At a given sampling instant, the switch connects the buffer and capacitor to an input.
2 The capacitor is charged to the input voltage.
3 The charge is held until the A/D converter digitizes the signal.
4 For multiple channels connected (multiplexed) to one A/D converter, the previous steps are

repeated for each input channel.
5 The entire process is repeated for the next sampling instant.

A multiplexer, S/H circuit, and A/D converter are illustrated in the next section.

Hardware can be divided into two main categories based on how signals are sampled: scanning
hardware, which samples input signals sequentially, and simultaneous sample and hold (SS/H)
hardware, which samples all signals at the same time. These two types of hardware are discussed
below.

 Analog Input Subsystem

1-13

Scanning Hardware

Scanning hardware samples a single input signal, converts that signal to a digital value, and then
repeats the process for every input channel used. In other words, each input channel is sampled
sequentially. A scan occurs when each input in a group is sampled once.

As shown below, most data acquisition devices have one A/D converter that is multiplexed to multiple
input channels.

Therefore, if you use multiple channels, those channels cannot be sampled simultaneously and a time
gap exists between consecutive sampled channels. This time gap is called the channel skew. You can
think of the channel skew as the time it takes the analog input subsystem to sample a single channel.

Additionally, the maximum sampling rate your hardware is rated at typically applies for one channel.
Therefore, the maximum sampling rate per channel is given by the formula:

maximumsamplingrateperchannel = maximumboardrate
numberofchannelsscanned

Typically, you can achieve this maximum rate only under ideal conditions. In practice, the sampling
rate depends on several characteristics of the analog input subsystem including the settling time and
the gain, as well as the channel skew. The following diagram shows the sample period and channel
skew for a multichannel configuration using scanning hardware.

If you cannot tolerate channel skew in your application, you must use hardware that allows
simultaneous sampling of all channels. Simultaneous sample and hold hardware is discussed in the
next section.

1 Introduction to Data Acquisition

1-14

Simultaneous Sample and Hold Hardware

Simultaneous sample and hold (SS/H) hardware samples all input signals at the same time and holds
the values until the A/D converter digitizes all the signals. For high-end systems, there can be a
separate A/D converter for each input channel.

For example, suppose you need to simultaneously measure the acceleration of multiple
accelerometers to determine the vibration of some device under test. To do this, you must use SS/H
hardware because it does not have a channel skew. In general, you might need to use SS/H hardware
if your sensor signal changes significantly in a time that is less than the channel skew, or if you need
to use a transfer function or perform a frequency domain correlation.

The following diagram shows sample period for a multichannel configuration using SS/H hardware.
Note that there is no channel skew.

Quantization
As discussed in the previous section, sampling takes a snapshot of the input signal at an instant of
time. When the snapshot is taken, the sampled analog signal must be converted from a voltage value
to a binary number that the computer can read. The conversion from an infinitely precise amplitude
to a binary number is called quantization.

During quantization, the A/D converter uses a finite number of evenly spaced values to represent the
analog signal. The number of different values is determined by the number of bits used for the
conversion. Most modern converters use 12 or 16 bits. Typically, the converter selects the digital
value that is closest to the actual sampled value.

The figure below shows a 1 Hz sine wave quantized by a 3 bit A/D converter.

 Analog Input Subsystem

1-15

The number of quantized values is given by 23 = 8, the largest representable value is given by 111 =
22 + 21 + 20 = 7.0, and the smallest representable value is given by 000 = 0.0.

Quantization Error

There is always some error associated with the quantization of a continuous signal. Ideally, the
maximum quantization error is ±0.5 least significant bits (LSBs), and over the full input range, the
average quantization error is zero.

As shown below, the quantization error for the previous sine wave is calculated by subtracting the
actual signal from the quantized signal.

Input Range and Polarity

The input range of the analog input subsystem is the span of input values for which a conversion is
valid. You can change the input range by selecting a different gain value. For example, National

1 Introduction to Data Acquisition

1-16

Instruments' AT-MIO-16E-1 board has eight gain values ranging from 0.5 to 100. Many boards include
a programmable gain amplifier that allows you to change the device gain through software.

When an input signal exceeds the valid input range of the converter, an overrange condition occurs.
In this case, most devices saturate to the largest representable value, and the converted data is
almost definitely incorrect. The gain setting affects the precision of your measurement — the higher
(lower) the gain value, the lower (higher) the precision. Refer to How Are Range, Gain, and
Measurement Precision Related? on page 1-24 for more information about how input range, gain,
and precision are related to each other.

An analog input subsystem can typically convert both unipolar signals and bipolar signals. A unipolar
signal contains only positive values and zero, while a bipolar signal contains positive values, negative
values, and zero.

Unipolar and bipolar signals are depicted below. Refer to the figure in “Quantization” on page 1-15
for an example of a unipolar signal.

In many cases, the signal polarity is a fixed characteristic of the sensor and you must configure the
input range to match this polarity.

As you can see, it is crucial to understand the range of signals expected from your sensor so that you
can configure the input range of the analog input subsystem to maximize resolution and minimize the
chance of an overrange condition.

How Are Acquired Samples Clocked?

Samples are acquired from an analog input subsystem at a specific rate by a clock. Like any timing
system, data acquisition clocks are characterized their resolution and accuracy. Timing resolution is
defined as the smallest time interval that you can accurately measure. The timing accuracy is affected
by clock jitter. Jitter arises when a clock produces slightly different values for a given time interval.

For any data acquisition system, there are typically three clock sources that you can use: the onboard
data acquisition clock, the computer clock, or an external clock. Data Acquisition Toolbox software
supports all of these clock sources, depending on the requirements of your hardware.
Onboard Clock

The onboard clock is typically a timer chip on the hardware board that is programmed to generate a
pulse stream at the desired rate. The onboard clock generally has high accuracy and low jitter
compared to the computer clock. You should always use the onboard clock when the sampling rate is
high, and when you require a fixed time interval between samples. The onboard clock is referred to
as the internal clock in this guide.

 Analog Input Subsystem

1-17

Computer Clock

The computer (PC) clock is used for boards that do not possess an onboard clock. The computer clock
is less accurate and has more jitter than the onboard clock, and is generally limited to sampling rates
below 500 Hz. The computer clock is referred to as the software clock in this guide.

External Clock

An external clock is often used when the sampling rate is low and not constant. For example, an
external clock source is often used in automotive applications where samples are acquired as a
function of crank angle.

Channel Configuration
You can configure input channels in one of these two ways:

• Differential
• Single-ended

Your choice of input channel configuration might depend on whether the input signal is floating or
grounded.

A floating signal uses an isolated ground reference and is not connected to the building ground. As a
result, the input signal and hardware device are not connected to a common reference, which can
cause the input signal to exceed the valid range of the hardware device. To circumvent this problem,
you must connect the signal to the onboard ground of the device. Examples of floating signal sources
include ungrounded thermocouples and battery devices.

A grounded signal is connected to the building ground. As a result, the input signal and hardware
device are connected to a common reference. Examples of grounded signal sources include
nonisolated instrument outputs and devices that are connected to the building power system.

Note For more information about channel configuration, refer to your hardware documentation.

Differential Inputs

When you configure your hardware for differential input, there are two signal wires associated with
each input signal — one for the input signal and one for the reference (return) signal. The
measurement is the difference in voltage between the two wires, which helps reduce noise and any
voltage that is common to both wires.

As shown below, the input signal is connected to the positive amplifier socket (labeled +) and the
return signal is connected to the negative amplifier socket (labeled -). The amplifier has a third
connector that allows these signals to be referenced to ground.

1 Introduction to Data Acquisition

1-18

National Instruments recommends that you use differential inputs under any of these conditions:

• The input signal is low level (less than 1 volt).
• The leads connecting the signal are greater than 10 feet.
• The input signal requires a separate ground-reference point or return signal.
• The signal leads travel through a noisy environment.

Single-Ended Inputs

When you configure your hardware for single-ended input, there is one signal wire associated with
each input signal, and each input signal is connected to the same ground. Single-ended
measurements are more susceptible to noise than differential measurements because of differences
in the signal paths.

As shown below, the input signal is connected to the positive amplifier socket (labeled +) and the
ground is connected to the negative amplifier socket (labeled -).

National Instruments suggests that you can use single-ended inputs under any of these conditions:

• The input signal is high level (greater than 1 volt).
• The leads connecting the signal are less than 10 feet.
• The input signal can share a common reference point with other signals.

You should use differential input connectors for any input signal that does not meet the preceding
conditions. You can configure many National Instruments boards for two different types of single-
ended connections:

• Referenced single-ended (RSE) connection

The RSE configuration is used for floating signal sources. In this case, the hardware device itself
provides the reference ground for the input signal.

 Analog Input Subsystem

1-19

• Nonreferenced single-ended (NRSE) connection

The NRSE input configuration is used for grounded signal sources. In this case, the input signal
provides its own reference ground and the hardware device should not supply one.

Refer to your National Instruments hardware documentation for more information about RSE and
NRSE connections.

Transferring Data from Hardware to System Memory
The transfer of acquired data from the hardware to system memory follows these steps:

1 Acquired data is stored in the hardware's first-in first-out (FIFO) buffer.
2 Data is transferred from the FIFO buffer to system memory using interrupts or DMA.

These steps happen automatically. Typically, all that's required from you is some initial configuration
of the hardware device when it is installed.

FIFO Buffer

The FIFO buffer is used to temporarily store acquired data. The data is temporarily stored until it can
be transferred to system memory. The process of transferring data into and out of an analog input
FIFO buffer is given below:

1 The FIFO buffer stores newly acquired samples at a constant sampling rate.
2 Before the FIFO buffer is filled, the software starts removing the samples. For example, an

interrupt is generated when the FIFO is half full, and signals the software to extract the samples
as quickly as possible.

3 Because servicing interrupts or programming the DMA controller can take up to a few
milliseconds, additional data is stored in the FIFO for future retrieval. For a larger FIFO buffer,
longer latencies can be tolerated.

4 The samples are transferred to system memory via the system bus (for example, PCI bus or AT
bus). After the samples are transferred, the software is free to perform other tasks until the next
interrupt occurs. For example, the data can be processed or saved to a disk file. As long as the
average rates of storing and extracting data are equal, acquired data will not be missed and your
application should run smoothly.

Interrupts

The slowest but most common method to move acquired data to system memory is for the board to
generate an interrupt request (IRQ) signal. This signal can be generated when one sample is acquired
or when multiple samples are acquired. The process of transferring data to system memory via
interrupts is given below:

1 When data is ready for transfer, the CPU stops whatever it is doing and runs a special interrupt
handler routine that saves the current machine registers, and then sets them to access the board.

2 The data is extracted from the board and placed into system memory.
3 The saved machine registers are restored, and the CPU returns to the original interrupted

process.

1 Introduction to Data Acquisition

1-20

The actual data move is fairly quick, but there is a lot of overhead time spent saving, setting up, and
restoring the register information. Therefore, depending on your specific system, transferring data by
interrupts might not be a good choice when the sampling rate is greater than around 5 kHz.

DMA

Direct memory access (DMA) is a system whereby samples are automatically stored in system
memory while the processor does something else. The process of transferring data via DMA is given
below:

1 When data is ready for transfer, the board directs the system DMA controller to put it into in
system memory as soon as possible.

2 As soon as the CPU is able (which is usually very quickly), it stops interacting with the data
acquisition hardware and the DMA controller moves the data directly into memory.

3 The DMA controller gets ready for the next sample by pointing to the next open memory location.
4 The previous steps are repeated indefinitely, with data going to each open memory location in a

continuously circulating buffer. No interaction between the CPU and the board is needed.

Your computer supports several different DMA channels. Depending on your application, you can use
one or more of these channels, For example, simultaneous input and output with a sound card
requires one DMA channel for the input and another DMA channel for the output.

 Analog Input Subsystem

1-21

Making Quality Measurements

In this section...
“What Do You Measure?” on page 1-22
“Accuracy and Precision” on page 1-22
“Noise” on page 1-25
“Matching the Sensor Range and A/D Converter Range” on page 1-25
“How Fast Should a Signal Be Sampled?” on page 1-26

What Do You Measure?
For most data acquisition applications, you need to measure the signal produced by a sensor at a
specific rate.

In many cases, the sensor signal is a voltage level that is proportional to the physical phenomena of
interest (for example, temperature, pressure, or acceleration). If you are measuring slowly changing
(quasi-static) phenomena like temperature, a slow sampling rate usually suffices. If you are
measuring rapidly changing (dynamic) phenomena like vibration or acoustic measurements, a fast
sampling rate is required.

To make high-quality measurements, you should follow these rules:

• Maximize the precision and accuracy
• Minimize the noise
• Match the sensor range to the A/D range

Accuracy and Precision
Whenever you acquire measured data, you should make every effort to maximize its accuracy and
precision. The quality of your measurement depends on the accuracy and precision of the entire data
acquisition system, and can be limited by such factors as board resolution or environmental noise.

In general terms, the accuracy of a measurement determines how close the measurement comes to
the true value. Therefore, it indicates the correctness of the result. The precision of a measurement
reflects how exactly the result is determined without reference to what the result means. The relative
precision indicates the uncertainty in a measurement as a fraction of the result.

For example, suppose you measure a table top with a meter stick and find its length to be 1.502
meters. This number indicates that the meter stick (and your eyes) can resolve distances down to at
least a millimeter. Under most circumstances, this is considered to be a fairly precise measurement
with a relative precision of around 1/1500. However, suppose you perform the measurement again
and obtain a result of 1.510 meters. After careful consideration, you discover that your initial
technique for reading the meter stick was faulty because you did not read it from directly above.
Therefore, the first measurement was not accurate.

Precision and accuracy are illustrated below.

1 Introduction to Data Acquisition

1-22

For analog input subsystems, accuracy is usually limited by calibration errors while precision is
usually limited by the A/D converter. Accuracy and precision are discussed in more detail below.

Accuracy

Accuracy is defined as the agreement between a measured quantity and the true value of that
quantity. Every component that appears in the analog signal path affects system accuracy and
performance. The overall system accuracy is given by the component with the worst accuracy.

For data acquisition hardware, accuracy is often expressed as a percent or a fraction of the least
significant bit (LSB). Under ideal circumstances, board accuracy is typically ±0.5 LSB. Therefore, a
12 bit converter has only 11 usable bits.

Many boards include a programmable gain amplifier, which is located just before the converter input.
To prevent system accuracy from being degraded, the accuracy and linearity of the gain must be
better than that of the A/D converter. The specified accuracy of a board is also affected by the
sampling rate and the settling time of the amplifier. The settling time is defined as the time required
for the instrumentation amplifier to settle to a specified accuracy. To maintain full accuracy, the
amplifier output must settle to a level given by the magnitude of 0.5 LSB before the next conversion,
and is on the order of several tenths of a millisecond for most boards.

Settling time is a function of sampling rate and gain value. High rate, high gain configurations
require longer settling times while low rate, low gain configurations require shorter settling times.

Precision

The number of bits used to represent an analog signal determines the precision (resolution) of the
device. The more bits provided by your board, the more precise your measurement will be. A high
precision, high resolution device divides the input range into more divisions thereby allowing a
smaller detectable voltage value. A low precision, low resolution device divides the input range into
fewer divisions thereby increasing the detectable voltage value.

 Making Quality Measurements

1-23

The overall precision of your data acquisition system is usually determined by the A/D converter, and
is specified by the number of bits used to represent the analog signal. Most boards use 12 or 16 bits.
The precision of your measurement is given by:

precision = one part in 2numberofbits

The precision in volts is given by:

precision = voltage range
2number of bits

For example, if you are using a 12 bit A/D converter configured for a 10 volt range, then

precision = 10 volts
212

This means that the converter can detect voltage differences at the level of 0.00244 volts (2.44 mV).

How Are Range, Gain, and Measurement Precision Related?

When you configure the input range and gain of your analog input subsystem, the end result should
maximize the measurement resolution and minimize the chance of an overrange condition. The actual
input range is given by the formula:

actual input range = input range
gain

The relationship between gain, actual input range, and precision for a unipolar and bipolar signal
having an input range of 10 V is shown below.

Relationship Between Input Range, Gain, and Precision

Input Range Gain Actual Input Range Precision (12 Bit A/D)
0 to 10 V 1.0 0 to 10 V 2.44 mV

2.0 0 to 5 V 1.22 mV
5.0 0 to 2 V 0.488 mV
10.0 0 to 1 V 0.244 mV

-5 to 5 V 0.5 -10 to 10 V 4.88 mV
1.0 -5 to 5 V 2.44 mV
2.0 -2.5 to 2.5 V 1.22 mV
5.0 -1.0 to 1.0 V 0.488 mV
10.0 -0.5 to 0.5 V 0.244 mV

As shown in the table, the gain affects the precision of your measurement. If you select a gain that
decreases the actual input range, then the precision increases. Conversely, if you select a gain that
increases the actual input range, then the precision decreases. This is because the actual input range
varies but the number of bits used by the A/D converter remains fixed.

Note With Data Acquisition Toolbox software, you do not have to specify the range and gain. Instead,
you simply specify the actual input range desired.

1 Introduction to Data Acquisition

1-24

Noise
Noise is considered to be any measurement that is not part of the phenomena of interest. Noise can
be generated within the electrical components of the input amplifier (internal noise), or it can be
added to the signal as it travels down the input wires to the amplifier (external noise). Techniques
that you can use to reduce the effects of noise are described below.

Removing Internal Noise

Internal noise arises from thermal effects in the amplifier. Amplifiers typically generate a few
microvolts of internal noise, which limits the resolution of the signal to this level. The amount of noise
added to the signal depends on the bandwidth of the input amplifier.

To reduce internal noise, you should select an amplifier with a bandwidth that closely matches the
bandwidth of the input signal.

Removing External Noise

External noise arises from many sources. For example, many data acquisition experiments are subject
to 60 Hz noise generated by AC power circuits. This type of noise is referred to as pick-up or hum,
and appears as a sinusoidal interference signal in the measurement circuit. Another common
interference source is fluorescent lighting. These lights generate an arc at twice the power line
frequency (120 Hz).

Noise is added to the acquisition circuit from these external sources because the signal leads act as
aerials picking up environmental electrical activity. Much of this noise is common to both signal
wires. To remove most of this common-mode voltage, you should

• Configure the input channels in differential mode. Refer to Channel Configuration on page 1-18
for more information about channel configuration.

• Use signal wires that are twisted together rather than separate.
• Keep the signal wires as short as possible.
• Keep the signal wires as far away as possible from environmental electrical activity.

Filtering

Filtering also reduces signal noise. For many data acquisition applications, a low-pass filter is
beneficial. As the name suggests, a low-pass filter passes the lower frequency components but
attenuates the higher frequency components. The cut-off frequency of the filter must be compatible
with the frequencies present in the signal of interest and the sampling rate used for the A/D
conversion.

A low-pass filter that's used to prevent higher frequencies from introducing distortion into the
digitized signal is known as an antialiasing filter if the cut-off occurs at the Nyquist frequency. That is,
the filter removes frequencies greater than one-half the sampling frequency. These filters generally
have a sharper cut-off than the normal low-pass filter used to condition a signal. Antialiasing filters
are specified according to the sampling rate of the system and there must be one filter per input
signal.

Matching the Sensor Range and A/D Converter Range
When sensor data is digitized by an A/D converter, you must be aware of these two issues:

 Making Quality Measurements

1-25

• The expected range of the data produced by your sensor. This range depends on the physical
phenomena you are measuring and the output range of the sensor.

• The range of your A/D converter. For many devices, the hardware range is specified by the gain
and polarity.

You should select the sensor and hardware ranges such that the maximum precision is obtained, and
the full dynamic range of the input signal is covered.

For example, suppose you are using a microphone with a dynamic range of 20 dB to 140 dB and an
output sensitivity of 50 mV/Pa. If you are measuring street noise in your application, then you might
expect that the sound level never exceeds 80 dB, which corresponds to a sound pressure magnitude
of 200 mPa and a voltage output from the microphone of 10 mV. Under these conditions, you should
set the input range of your data acquisition card for a maximum signal amplitude of 10 mV, or a little
more.

How Fast Should a Signal Be Sampled?
Whenever a continuous signal is sampled, some information is lost. The key objective is to sample at a
rate such that the signal of interest is well characterized and the amount of information lost is
minimized.

If you sample at a rate that is too slow, then signal aliasing can occur. Aliasing can occur for both
rapidly varying signals and slowly varying signals. For example, suppose you are measuring
temperature once a minute. If your acquisition system is picking up a 60-Hz hum from an AC power
supply, then that hum will appear as constant noise level if you are sampling at 30 Hz.

Aliasing occurs when the sampled signal contains frequency components greater than one-half the
sampling rate. The frequency components could originate from the signal of interest in which case
you are undersampling and should increase the sampling rate. The frequency components could also
originate from noise in which case you might need to condition the signal using a filter. The rule used
to prevent aliasing is given by the Nyquist theorem, which states that

• An analog signal can be uniquely reconstructed, without error, from samples taken at equal time
intervals.

• The sampling rate must be equal to or greater than twice the highest frequency component in the
analog signal. A frequency of one-half the sampling rate is called the Nyquist frequency.

However, if your input signal is corrupted by noise, then aliasing can still occur.

For example, suppose you configure your A/D converter to sample at a rate of 4 samples per second
(4 S/s or 4 Hz), and the signal of interest is a 1 Hz sine wave. Because the signal frequency is one-
fourth the sampling rate, then according to the Nyquist theorem, it should be completely
characterized. However, if a 5 Hz sine wave is also present, then these two signals cannot be
distinguished. In other words, the 1 Hz sine wave produces the same samples as the 5 Hz sine wave
when the sampling rate is 4 S/s. The following diagram illustrates this condition.

1 Introduction to Data Acquisition

1-26

In a real-world data acquisition environment, you might need to condition the signal by filtering out
the high frequency components.

Even though the samples appear to represent a sine wave with a frequency of one-fourth the
sampling rate, the actual signal could be any sine wave with a frequency of:

n ± 0.25 × sampling rate

where n is zero or any positive integer. For this example, the actual signal could be at a frequency of
3 Hz, 5 Hz, 7 Hz, 9 Hz, and so on. The relationship 0.25 × (sampling rate) is called the alias of a
signal that might be at another frequency. In other words, aliasing occurs when one frequency
assumes the identity of another frequency.

If you sample the input signal at least twice as fast as the highest frequency component, then that
signal might be uniquely characterized, but this rate would not mimic the waveform very closely. As
shown below, to get an accurate picture of the waveform, you need a sampling rate of roughly 10 to
20 times the highest frequency.

 Making Quality Measurements

1-27

As shown in the top figure, the low sampling rate produces a sampled signal that appears to be a
triangular waveform. As shown in the bottom figure, a higher fidelity sampled signal is produced
when the sampling rate is higher. In the latter case, the sampled signal actually looks like a sine
wave.

How Can Aliasing Be Eliminated?

The primary considerations involved in antialiasing are the sampling rate of the A/D converter and
the frequencies present in the sampled data. To eliminate aliasing, you must

• Establish the useful bandwidth of the measurement.
• Select a sensor with sufficient bandwidth.
• Select a low-pass antialiasing analog filter that can eliminate all frequencies exceeding this

bandwidth.
• Sample the data at a rate at least twice that of the filter's upper cutoff frequency.

1 Introduction to Data Acquisition

1-28

Selected Bibliography
[1] Transducer Interfacing Handbook — A Guide to Analog Signal Conditioning, edited by Daniel H.

Sheingold; Analog Devices Inc., Norwood, MA, 1980.

[2] Bentley, John P., Principles of Measurement Systems, Second Edition; Longman Scientific and
Technical, Harlow, Essex, UK, 1988.

[3] Bevington, Philip R., Data Reduction and Error Analysis for the Physical Sciences; McGraw-Hill,
New York, NY, 1969.

[4] Carr, Joseph J., Sensors; Prompt Publications, Indianapolis, IN, 1997.

[5] The Measurement, Instrumentation, and Sensors Handbook, edited by John G. Webster; CRC
Press, Boca Raton, FL, 1999.

[6] PCI-MIO E Series User Manual, January 1997 Edition; Part Number 320945B-01, National
Instruments, Austin, TX, 1997.

 Selected Bibliography

1-29

Using Data Acquisition Toolbox Software

This topic provides the information you need to get started with Data Acquisition Toolbox software.
The sections are as follows.

• “Installation Information” on page 2-2
• “Access Your Hardware” on page 2-3

2

Installation Information
In this section...
“Prerequisites” on page 2-2
“Toolbox Installation” on page 2-2
“Hardware and Driver Installation” on page 2-2

Prerequisites
To acquire live, measured data or generate signals between the MATLAB workspace, you must install
these components:

• MATLAB, and optionally Simulink
• Data Acquisition Toolbox
• The support package for your data acquisition device vendor
• A supported data acquisition device (see https://www.mathworks.com/hardware-support/

data-acquistion-software.html)

Toolbox Installation
To determine if Data Acquisition Toolbox software is installed on your system, type

ver

at the MATLAB prompt. The Command Window lists information about the software versions you are
running, including installed add-on products and their version numbers. Check the list to see if Data
Acquisition Toolbox appears. For information about installing the toolbox, see the MATLAB
Installation documentation.

If you experience installation difficulties and have Internet access, look for the license manager and
installation information at the MathWorks website (https://www.mathworks.com).

Hardware and Driver Installation
Device drivers and other vendor-specific software are available as Support Packages from the Add-
Ons menu. See “Install Hardware Support Package for Vendor Support” on page 5-2.

2 Using Data Acquisition Toolbox Software

2-2

https://www.mathworks.com/hardware-support/data-acquistion-software.html
https://www.mathworks.com/hardware-support/data-acquistion-software.html
https://www.mathworks.com

Access Your Hardware

In this section...
“Connect to Your Hardware” on page 2-3
“Examine Your Hardware Resources” on page 2-3
“Acquire Audio Data” on page 2-4
“Generate Audio Data” on page 2-4
“Acquire and Generate Digital Data” on page 2-5

Connect to Your Hardware
Perhaps the most effective way to get started with Data Acquisition Toolbox software is to connect to
your hardware, and input or output data.

Each example in this topic illustrates a typical data acquisition workflow. A workflow comprises all
the steps you are likely to take when acquiring or outputting data using a supported hardware device.
You should keep these steps in mind when constructing your own data acquisition applications.

Note that the analog input and analog output examples use a sound card, while the digital I/O
example uses a National Instruments board. If you are using a different supported hardware device,
you should modify the vendor name and the device ID as needed.

If you want detailed information about any functions that are used, refer to the list of functions.

Note If you are connecting to a CompactDAQ devices or a counter/timer device, see “Counter and
Timer Input and Output”.

Examine Your Hardware Resources
You can examine the data acquisition hardware resources visible to the toolbox with the
daqvendorlist and daqlist functions. Hardware resources include installed boards, hardware
drivers, and adaptors.

For example, to view the available audio devices, type:

daqlist("directsound")

To view available National Instruments devices, type:

daqlist("ni")

To view all available devices, type:

daqlist

To view the operational status of hardware vendors, type:

daqvendorlist

 Access Your Hardware

2-3

Acquire Audio Data
If you have a sound card installed, you can run the following example, which acquires 1 second of
data an audio input hardware channels, and then plots the acquired data.

You should modify this example to suit your specific application needs.

1 Create a DataAcquisition object — Create the DataAcquisition object d for a sound card.

d = daq('directsound');
2 Identify the system devices and their IDs for audio input and output.

daqlist("directsound")

 7×4 table

 DeviceID Description Model DeviceInfo
 ________ __ __ __________________________

 "Audio0" "DirectSound Primary Sound Capture Driver" "Primary Sound Capture Driver" [1×1 daq.audio.DeviceInfo]
 "Audio1" "DirectSound Headset Microphone (Plantronics BT600)" "Headset Microphone (Plantronics BT600)" [1×1 daq.audio.DeviceInfo]
 "Audio2" "DirectSound Primary Sound Driver" "Primary Sound Driver" [1×1 daq.audio.DeviceInfo]
 "Audio3" "DirectSound Headset Earphone (Plantronics BT600)" "Headset Earphone (Plantronics BT600)" [1×1 daq.audio.DeviceInfo]
 "Audio4" "DirectSound Speakers (2- Realtek High Definition Audio)" "Speakers (2- Realtek High Definition Audio)" [1×1 daq.audio.DeviceInfo]
 "Audio5" "DirectSound Speakers (Realtek High Definition Audio)" "Speakers (Realtek High Definition Audio)" [1×1 daq.audio.DeviceInfo]
 "Audio6" "DirectSound LEN LT2452pwC (NVIDIA High Definition Audio)" "LEN LT2452pwC (NVIDIA High Definition Audio)" [1×1 daq.audio.DeviceInfo]

3 Add channel — Add an audio input channel to d for the microphone device.

addinput(d,"Audio1","1","Audio");

To display a summary of the DataAcquisition channels, type:
d.Channels

ans =

 Index Type Device Channel Measurement Type Range Name
 _____ ______ ________ _______ ________________ ______________ ____

 1 "audi" "Audio1" "1" "Audio" "-1.0 to +1.0" ""

4 Acquire data — Start the acquisition. When all the data is acquired, it is assigned to data.

data = read(d,seconds(1));
plot(data)

5 Clean up — When you no longer need d, you should remove it from memory.

delete(d)
clear d

Generate Audio Data
If you have a sound card installed, you can run the following example, which outputs 1 second of data
to two analog output hardware channels.

You should modify this example to suit your specific application needs.

1 Create a DataAcquisition object — Create the DataAcquisition object d for a sound card.

d = daq('directsound');
2 Add channel — Add an audio output channel to DataAcquisition d. This example uses the device

ID Audio4 for the speakers.

addoutput(d,"Audio4',"1","Audio");

2 Using Data Acquisition Toolbox Software

2-4

To display a summary of the DataAcquisition and its channels, type:
d,d.Channels

3 Output data — Create 1 second of output data, and queue the data for output from the device.
You queue a matrix with one column of data for each hardware channel.

data = sin(linspace(0,2*pi*500,44100)');
preload(d,data)

Start the output. When all the data is output, d stops generating.

start(d)
4 Clean up — When you no longer need d, you should remove it from memory and from the

MATLAB workspace.

delete(d)
clear d

Acquire and Generate Digital Data
If you have a supported National Instruments board with at least two digital I/O ports, you can run
the following example, which writes and reads digital values.

You should modify this example to suit your specific application needs. Adjust the example if the ports
on your device do not support the input/output directions specified here.

1 Create a DataAcquisition object — Create the DataAcquisition interface d for a National
Instruments board with hardware device ID cDAQ1Mod1.

s = daq("ni");
2 Add digital input channels — Add two lines from port 0 to d, and configure them for input.

addinput(d,"cDAQ1Mod1","Port0/Line0:1","Digital");
3 Add digital output lines — Add two lines from port 0 to s, and configure them for output.

addoutput(d,"cDAQ1Mod1","Port0/Line2:3","Digital");

To display a summary of the channels, type:
d.Channels

ans =

 Index Type Device Channel Measurement Type Range Name
 _____ _____ ___________ _____________ ________________ _____ __________________

 1 "dio" "cDAQ1Mod1" "port0/line0" "InputOnly" "n/a" "Dev3_port0/line0"
 2 "dio" "cDAQ1Mod1" "port0/line1" "InputOnly" "n/a" "Dev3_port0/line1"
 3 "dio" "cDAQ1Mod1" "port0/line2" "OutputOnly" "n/a" "Dev3_port0/line2"
 4 "dio" "cDAQ1Mod1" "port0/line3" "OutputOnly" "n/a" "Dev3_port0/line3"

4 Add clock and trigger — To synchronize operations, add a clock and trigger connection.

addclock(d,"ScanClock","External","cDAQ1/PFI0");
addtrigger(d,"Digital","StartTrigger","External","cDAQ1/PFI1");
d.Clocks,d.DigitalTriggers

ans =

 Clock with properties:

 Access Your Hardware

2-5

 Source: 'External'
 Destination: 'cDAQ1/PFI0'
 Type: ScanClock

ans =

 DigitalTrigger with properties:

 Source: 'External'
 Destination: 'cDAQ1/PFI1'
 Type: StartTrigger
 Condition: 'RisingEdge'

Note Digital line values are usually not transferred at a specific rate. Although some specialized
boards support clocked I/O.

5 Queue output data and start device — Create an array of output values, and queue the values.
Note that reading and writing digital I/O line values typically does not require that you configure
specific property values.

preload(d,round(rand(4000,2)));
gval = start(d);

6 Display input — To read only the input lines, type:

gval
7 Clean up — When you no longer need d, you should remove it from memory and from the

MATLAB workspace.

delete(d)
clear d

2 Using Data Acquisition Toolbox Software

2-6

Introduction to the DataAcquisition
Interface

• “The DataAcquisition Object” on page 3-2
• “Get Command-Line Help” on page 3-3

3

The DataAcquisition Object
The toolbox interface uses a DataAcquisition object that allows you to communicate easily with
devices from National Instruments, Measurement Computing, Analog Devices, Microsoft Windows
sound cards, and Digilent. You create a DataAcquisition using the daq function. A DataAcquisition
represents one or more channels that you specify on data acquisition devices. You configure a
DataAcquisition to acquire or generate data at a specific rate, based on the specified number of scans
or the duration of the operation.

For an explanation of how this communication works, see Data Acquisition System on page 1-5. The
relationship between you, the application software, the driver software, the chassis, and the devices
is shown here.

For more information about creating a DataAcquisition, see “Create a DataAcquisition Interface” on
page 4-5.

See Also

More About
• “Limitations by Vendor” on page B-2

3 Introduction to the DataAcquisition Interface

3-2

Get Command-Line Help
To access command-line help for Data Acquisition Toolbox, type:

help daq

or

daqhelp

The Command Window displays links for the functions of the DataAcquisition interface.

To access command-line help for a particular function, type:

daqhelp function_name

For example,

daqhelp readwrite

You can get help on individual properties of the toolbox objects. For example, to see help on the
Channels property of a DataAcquisition object, type:

help daq.interfaces.DataAcquisition.Channels

It can be easier to get function and property help if the object exists in the workspace. For example,

d = daq("ni");
help d.Rate
help d.addinput

 Get Command-Line Help

3-3

Using the DataAcquisition Interface

• “Interface Workflow” on page 4-2
• “Digital Input and Output” on page 4-3
• “Discover Hardware Devices” on page 4-4
• “Create a DataAcquisition Interface” on page 4-5
• “Channel Properties” on page 4-7

4

Interface Workflow
In this section...
“Working a DataAcquisition” on page 4-2
“DataAcquisition Interface and Data Acquisition Toolbox” on page 4-2

Working a DataAcquisition
Use the DataAcquisition object to communicate with data acquisition devices, such as National
Instruments devices including a CompactDAQ chassis.

Use the daq function to create a DataAcquisition interface.

You can also synchronize operations within the DataAcquisition. See “Synchronization” on page 13-
2 for more information.

DataAcquisition Interface and Data Acquisition Toolbox
Data Acquisition Toolbox and the MATLAB technical computing environment use the DataAcquisition
interface to communicate with devices of various vendors, such as National Instruments, including a
CompactDAQ chassis. You can operate in the foreground, where the operation blocks MATLAB until
complete, or in the background, where MATLAB continues to run additional MATLAB commands
while the hardware operation proceeds.

You can create a DataAcquisition with both analog input and analog output channels and configure
acquisition and generation simultaneously. See “Acquire Data and Generate Signals Simultaneously”
on page 6-16 for more information.

See Also

More About
• “Transition Your Code from Session to DataAcquisition Interface” on page 14-2

4 Using the DataAcquisition Interface

4-2

Digital Input and Output
Digital subsystems transfer digital or logical values in bits via digital lines. You can perform clocked
and non-clocked digital operations using the DataAcquisition interface in the Data Acquisition
Toolbox.

For more information see “Digital Channels” on page 9-2.

 Digital Input and Output

4-3

Discover Hardware Devices
Discover the supported data acquisition devices on your system.

Step 1. Discover hardware devices.

dev = daqlist

dev =

 4×5 table

 VendorID DeviceID Description Model DeviceInfo
 _____________ ________ ___ ______________________________ ____________________

 "ni" "Dev2" "National Instruments(TM) USB-6509" "USB-6509" [1×1 daq.DeviceInfo]
 "ni" "Dev3" "National Instruments(TM) USB-6211" "USB-6211" [1×1 daq.DeviceInfo]
 "directsound" "Audio0" "DirectSound Primary Sound Capture Driver" "Primary Sound Capture Driver" [1×1 daq.DeviceInfo]
 "directsound" "Audio1" "DirectSound Primary Sound Driver" "Primary Sound Driver" [1×1 daq.DeviceInfo]

Step 2. Get detailed device information.

View the DeviceInfo details for the Dev3 device:

dev.DeviceInfo(2)

ans =

ni: National Instruments(TM) USB-6211 (Device ID: 'Dev3')
 Analog input supports:
 4 ranges supported
 Rates from 0.1 to 250000.0 scans/sec
 16 channels ('ai0' - 'ai15')
 'Voltage' measurement type

 Analog output supports:
 -10 to +10 Volts range
 Rates from 0.1 to 250000.0 scans/sec
 2 channels ('ao0','ao1')
 'Voltage' measurement type

 Digital IO supports:
 8 channels ('port0/line0' - 'port1/line3')
 'InputOnly','OutputOnly' measurement types

 Counter input supports:
 Rates from 0.1 to 80000000.0 scans/sec
 2 channels ('ctr0','ctr1')
 'EdgeCount','PulseWidth','Frequency','Position' measurement types

 Counter output supports:
 Rates from 0.1 to 80000000.0 scans/sec
 2 channels ('ctr0','ctr1')
 'PulseGeneration' measurement type

4 Using the DataAcquisition Interface

4-4

Create a DataAcquisition Interface
This example shows how to create a DataAcquisition interface and add channels to acquire and
generate data. You can also configure DataAcquisition and channel properties needed for your
operation.

Step 1. Find Devices for the Vendor.

daqlist("ni")

 2×4 table

 DeviceID Description Model DeviceInfo
 ________ ___________________________________ __________ _______________________

 "Dev2" "National Instruments(TM) USB-6509" "USB-6509" [1×1 daq.ni.DeviceInfo]
 "Dev3" "National Instruments(TM) USB-6211" "USB-6211" [1×1 daq.ni.DeviceInfo]

Step 2. Create a DataAcquisition Object.

 d = daq("ni")

DataAcquisition using National Instruments(TM) hardware:

 Running: 0
 Rate: 1000
 NumScansAvailable: 0
 NumScansAcquired: 0
 NumScansQueued: 0
 NumScansOutputByHardware: 0
 RateLimit: []

After you create a DataAcquisition object, add channels using the addinput and addoutput
functions.

Step 3. Add Channels to the DataAcquisition.

Add an analog input channel, and view the DataAcquisition channel list:

addinput(d,"Dev3","ai0","Voltage")
d.Channels

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ______ _______ ________________ __________________ __________

 1 "ai" "Dev3" "ai0" "Voltage (Diff)" "-10 to +10 Volts" "Dev3_ai0"

Step 4. Change Channel Properties.

Change the channel TerminalConfig property to 'SingleEnded', and view the updated
configuration:

d.Channels.TerminalConfig = "SingleEnded";
d.Channels

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ______ _______ _____________________ __________________ __________

 Create a DataAcquisition Interface

4-5

 1 "ai" "Dev3" "ai0" "Voltage (SingleEnd)" "-10 to +10 Volts" "Dev3_ai0"

See Also

Related Examples
• “Acquire Counter Input Data” on page 8-3
• “Generate Pulse Data on a Counter Channel” on page 8-6

More About
• “Analog Input and Output”
• “Transition Your Code from Session to DataAcquisition Interface” on page 14-2

4 Using the DataAcquisition Interface

4-6

Channel Properties

Get Property Information
You can use the get, set, and properties functions to get information on channel object
properties. For example, create a DataAcquisition and add a voltage measurement input channel,
then view the channel properties:

d = daq("ni");
ch = addinput(d,"Dev1",1,"Voltage");
get(ch)

 Coupling: DC
 TerminalConfig: Differential
 Range: -10 to +10 Volts
 Name: 'Dev1_ai1'
 ID: 'ai1'
 Device: [1x1 daq.ni.DeviceInfo]
MeasurementType: 'Voltage'

View the channel settable properties and their acceptable values:

set(ch)

 Coupling: [DC | AC]
TerminalConfig: [Differential | SingleEnded | SingleEndedNonReferenced | PseudoDifferential]
 Range: -10 to +10 Volts
 Name: {}

Change the channel terminal configuration:

ch.TerminalConfig = "SingleEnded"

ch =

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ______ _______ _____________________ __________________ __________

 1 "ai" "Dev1" "ai1" "Voltage (SingleEnd)" "-10 to +10 Volts" "Dev1_ai1"

You can also request help in the Command Window on a specific property, providing either the object
and property, or the class name and property. For example:

help ch.TerminalConfig

or

help ("daq.AnalogInputVoltageChannel.TerminalConfig")

 TerminalConfig The current input type (single ended/differential)

All Channels
All channel objects have these properties in common for all measurement types:

Property Description Values
Name Channel name character vector constructed of

device ID and channel ID

 Channel Properties

4-7

Property Description Values
ID Channel identifier

corresponding to device
terminal ID

character vector, for example:

'ai0'
'ao3'
'Port2/Line1'
'ctr0'

Device DeviceInfo object for device
with this channel

DeviceInfo object handle

MeasurementType Type of measurement character vector, for example:

'Voltage'
'Current'
'Thermocouple'
'Digital'
'Audio'

Analog Input and Output Channels
• “Voltage Measurement” on page 4-8
• “Current Measurement” on page 4-8

Voltage Measurement

Input voltage measurement channel objects also include these properties:

Property Description Values
Range Input value range double values depending on

measurement type and device
support

Coupling Coupling mode of the channel character vector of:

'AC'
'DC'

TerminalConfig Channel terminal configuration
as described in “Channel
Configuration” on page 1-18

character vector of:

'Differential'
'SingleEnded'
'SingleEndedNonReferenced'
'PseudoDifferential'

Current Measurement

Current measurement channel objects also include these properties:

Property Description Values
Current Input
Range Input value range double values depending on

measurement type and device
support

4 Using the DataAcquisition Interface

4-8

Property Description Values
Coupling Coupling mode of the channel character vector of:

'AC'
'DC'

TerminalConfig Channel terminal configuration
as described in “Channel
Configuration” on page 1-18

character vector of:

'Differential'
'SingleEnded'
'SingleEndedNonReferenced'
'PseudoDifferential'

Current Input and Output
ShuntLocation (Only some vendors) Indicates if

the shunt resistor is located
internally on the device or
externally

character vector of:

'Internal'
'External'

ShuntResistance (Only some vendors) Indicates
shunt resistance in ohms

double

Other Analog Measurements
• “Thermocouple Measurement” on page 4-9
• “Accelerometer Measurement” on page 4-10
• “RTD Measurement” on page 4-10
• “Bridge Measurement” on page 4-11
• “Microphone Measurement” on page 4-12
• “IEPE Measurement” on page 4-13

Thermocouple Measurement

Thermocouple measurement input channel objects also include these properties:

Property Description Values
ThermocoupleType Type of thermocouple based on

temperature range and
sensitivity, according to the
NIST Thermocouple Types
Definitions.

character vector of:

'J'
'K'
'N'
'R'
'S'
'T'
'B'
'E'

Units Temperature units character vector of:

'Celsius' (default)
'Fahrenheit'
'Kelvin'
'Rankine'

 Channel Properties

4-9

https://srdata.nist.gov/its90/tables/table_i.html
https://srdata.nist.gov/its90/tables/table_i.html

Property Description Values
Range Input value range double values depending on

measurement type and device
support

Accelerometer Measurement

Accelerometer measurement input channel objects also include these properties:

Property Description Values
Sensitivity Sensitivity of accelerometer

channel expressed as volts per
g-force, V/g

double

ExcitationCurrent Current to excite an IEPE
accelerometer, IEPE
microphone, generic IEPE
sensor, or RTD, specified in
amperes.

double

ExcitationSource Indicates source of excitation
for IEPE sensor or RTD

character vector of:

'Internal'
'External'
'None'
'Unknown'

Coupling Coupling mode of the channel character vector of:

'AC'
'DC'

TerminalConfig Channel input configuration as
described in “Channel
Configuration” on page 1-18

character vector of:

'Differential'
'SingleEnded'
'SingleEndedNonReferenced'
'PseudoDifferential'

Range Input value range double values depending on
measurement type and device
support

RTD Measurement

RTD measurement input channel objects also include these properties:

Property Description Values
Units Temperature units character vector of:

'Celsius' (default)
'Fahrenheit'
'Kelvin'
'Rankine'

4 Using the DataAcquisition Interface

4-10

Property Description Values
RTDType Specify the sensitivity of a

standard RTD 100-ohm platinum
sensor

character vector of:

'Pt3750'
'Pt3851'
'Pt3911'
'Pt3916'
'Pt3920'
'Pt3928'

RTDConfiguration Specify the wiring configuration
for measuring resistance

character vector of:

'TwoWire'
'ThreeWire'
'FourWire'

R0 Specify the resistance of this
device to a reference
temperature

double

ExcitationCurrent Current to excite an IEPE
accelerometer, IEPE
microphone, generic IEPE
sensor, or RTD, specified in
amperes

double

ExcitationSource Indicates source of excitation
for IEPE sensor

character vector of:

'Internal'
'External'
'None'
'Unknown'

Coupling Coupling mode of the channel character vector of:

'AC'
'DC'

TerminalConfig Channel input configuration as
described in “Channel
Configuration” on page 1-18

character vector of:

'Differential'
'SingleEnded'
'SingleEndedNonReferenced'
'PseudoDifferential'

Range Input value range double values depending on
measurement type and device
support

Bridge Measurement

Bridge measurement input channel objects also include these properties:

 Channel Properties

4-11

Property Description Values
BridgeMode Bridge mode representing the

active gauge of the analog input
channel

character vector of:

'Full' — All four gauges are
active.

'Half'— Only two bridges are
active.

'Quarter'— Only one bridge is
active.

ExcitationSource Indicates source of excitation
voltage

character vector of:

'Internal'
'External'
'None'
'Unknown'

ExcitationVoltage Indicates the excitation voltage
value to apply to bridge
measurements

double

NominalBridgeResistance Resistance of a bridge-based
sensor in ohms

double

Range Range of input values double values depending on
measurement type and device
support

Microphone Measurement

Microphone measurement input channel objects also include these properties:

Property Description Values
Sensitivity Microphone channel sensitivity

in volts per pascal, V/Pa
double

MaxSoundPressureLevel Maximum sound pressure of the
microphone channel in decibels

double

ExcitationCurrent Current to excite an IEPE
accelerometer, IEPE
microphone, generic IEPE
sensor, or RTD, specified in
amperes.

double

ExcitationSource Indicates source of excitation
for IEPE sensor

character vector of:

'Internal'
'External'
'None'
'Unknown'

Coupling Coupling mode of the channel character vector of:

'AC'
'DC'

4 Using the DataAcquisition Interface

4-12

Property Description Values
TerminalConfig Channel input configuration as

described in “Channel
Configuration” on page 1-18

character vector of:

'Differential'
'SingleEnded'
'SingleEndedNonReferenced'
'PseudoDifferential'

Range Input value range double values depending on
measurement type and device
support

IEPE Measurement

IEPE measurement input channel objects also include these properties:

Property Description Values
ExcitationCurrent Current to excite an IEPE

accelerometer, IEPE
microphone, generic IEPE
sensor, or RTD, specified in
amperes.

double

ExcitationSource Indicates source of excitation
for IEPE sensor

character vector of:

'Internal'
'External'
'None'
'Unknown'

Coupling Coupling mode of the channel character vector of:

'AC'
'DC'

TerminalConfig Channel input configuration as
described in “Channel
Configuration” on page 1-18

character vector of:

'Differential'
'SingleEnded'
'SingleEndedNonReferenced'
'PseudoDifferential'

Range Input value range double values depending on
measurement type and device
support

Digital Channels
Digital channel objects include the following properties:

Property Description Values
Direction Direction of data flow,

changeable only for
bidirectional channels

character vector of:

'Input'
'Output'

 Channel Properties

4-13

Counter Channels
• “All Counter Channels” on page 4-14
• “Edge Count” on page 4-14
• “Frequency” on page 4-14
• “Position” on page 4-14
• “Pulse Width” on page 4-15
• “Pulse Generation” on page 4-15

All Counter Channels

Counter input and output channel objects also include these properties:

Edge Count

Counter input edge count channels also include the following properties:

Property Description Values
ActiveEdge Indicates rising or falling edge

of edge count signal
character vector of:

'Rising'
'Falling'

CountDirection Indicates counting up or down character vector of:

'Increment'
'Decrement'

InitialCount Value to count from uint32
Terminal Terminal on device character vector, for example

'PFI2'

Frequency

Counter input frequency measurement channels also include the following properties:

Property Description Values
ActiveEdge Indicates rising or falling edge

of edge count signal
character vector of:

'Rising'
'Falling'

Terminal Terminal on device character vector, for example:

'PFI2'

Position

For an overview of position measurement, including signals, encoding types, and Z-indexing, see
National Instruments Encoder Measurements: How-To Guide. See also “Measure Angular Position
with an Incremental Rotary Encoder” on page 18-108.

Counter input position measurement channels also include the following properties:

4 Using the DataAcquisition Interface

4-14

https://www.ni.com/tutorial/7109/en/

Property Description Values
EncoderType Specify the encoding type of the

counter input
character vector of:

'X1'
'X2'
'X4'
'TwoPulse'

ZResetEnable Allow the Z-indexing to be reset logical
ZResetValue Specify the reset value for Z-

indexing on a counter input
numeric

ZResetCondition Specify reset conditions for Z-
indexing of counter

character vector of:

'AHigh'
'BHigh'
'BothLow'
'BothHigh'

InitialCount Specify the point from which the
device starts the counter

double value, typically 0

TerminalA External terminal on device character vector, for example:
'PFI0'

TerminalB External terminal on device character vector, for example:
'PFI1'

TerminalZ External index terminal on
device for zero or reference
signal

character vector, for example:
'PFI2'

Pulse Width

Counter input pulse width measurement channels also include the following properties:

Property Description Values
ActivePulse Indicates active level character vector of:

'High'
'Low'

Terminal External terminal on device character vector, for example:
'PFI2'

Pulse Generation

Counter output pulse generation channels also include the following properties:

Property Description Values
IdleState Indicate the default state of the

counter output channel when
not running

character vector of:

'High'
'Low'

 Channel Properties

4-15

Property Description Values
InitialDelay Specify an initial delay on the

counter output channel before
pulse generation

double value in seconds

Frequency Specify the pulse repetition rate
of a counter output channel

double value in Hz

DutyCycle Specify the fraction of time that
the generated pulse is in active
state, as a portion of 1.0. A
square wave has a duty cycle of
0.5.

double

Terminal External terminal on device character vector, for example,
'PFI2'

Audio Channels
Audio input and output channel objects also include these properties:

Property Description Values
Range Input/output value range -1.0 to +1.0

Function Generator Channels
Function generator channel objects also include these properties:

Property Description Values
Range Output value range double values depend on device

support
TerminalConfig Channel input configuration as

described in “Channel
Configuration” on page 1-18

character vector of:

'Differential'
'SingleEnded'
'SingleEndedNonReferenced'
'PseudoDifferential'

Gain Specify amplification of scan
data for channel output.

double value between –5 and 5.
Ensure that Gain x data +
Offset falls within the valid
Range of device output.

Offset Specify offset of scan data for
channel output.

double value between –5 and 5.
Ensure that Gain x data +
Offset falls within the valid
Range of device output.

Frequency Specify waveform frequency double value in Hz, within
FrequencyLimit value

4 Using the DataAcquisition Interface

4-16

Property Description Values
WaveformType Specify waveform shape character vector of:

'Sine'
'Square'
'Triangle'
'RampUp'
'RampDown'
'DC'
'Arbitrary'

FrequencyLimit Minimum and maximum rates
that the function generation
channel supports

double

See Also
Functions
addbidirectional | addinput | addoutput

 Channel Properties

4-17

Support Package Installer

5

Install Hardware Support Package for Vendor Support

In this section...
“Install Support Packages” on page 5-2
“Update or Uninstall Support Packages” on page 5-2

To communicate with a data acquisition device, you need to install the required support package on
your system for the device vendor. Data Acquisition Toolbox support packages are available for the
following vendors:

• Analog Devices (ADALM1000)
• Digilent (Analog Discovery)
• Measurement Computing
• Microsoft (Windows Sound cards)
• National Instruments (NI-DAQmx)

Install Support Packages
To install the required support package for a specific vendor and device:

1 On the MATLAB Home tab, in the Environment section, click Add-Ons > Get Hardware
Support Packages.

2 In the left pane of the Add-On Explorer, scroll to Filter by Type and check Hardware Support
Packages.

3 Under Filter by Vendor check the vendor of your device. The Add-On Explorer displays support
packages for that vendor. Click the support package for your vendor and device.

4 Click Install > Install. Sign in to your MathWorks® account if necessary, and proceed.

Update or Uninstall Support Packages
To uninstall support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage Add-Ons.

To update existing support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for Updates >
Hardware Support Packages.

See Also

More About
• “Get and Manage Add-Ons”

5 Support Package Installer

5-2

Analog Input and Output

• “Acquire Data in the Foreground” on page 6-2
• “Acquire Data from Multiple Channels” on page 6-3
• “Acquire Data in the Background” on page 6-4
• “Acquire Bridge Measurements” on page 6-5
• “Acquire Sound Pressure Data” on page 6-7
• “Acquire IEPE Data” on page 6-9
• “Generate Signals in the Foreground” on page 6-11
• “Generate Signals on Multiple Channels” on page 6-12
• “Generate Signals in the Background” on page 6-13
• “Generate Signals in the Background Continuously” on page 6-14
• “Acquire Data and Generate Signals Simultaneously” on page 6-16
• “Acquire Data with the Analog Input Recorder” on page 6-17
• “Generate Signals with the Analog Output Generator” on page 6-21

6

Acquire Data in the Foreground
This example shows how to acquire voltage data from an NI 9205 device with ID cDAQ1Mod1.

Create a DataAcquisition object and save it to the variable, d:

d = daq("ni")

d =

DataAcquisition using National Instruments(TM) hardware:

 Running: 0
 Rate: 1000
 NumScansAvailable: 0
 NumScansAcquired: 0
 NumScansQueued: 0
 NumScansOutputByHardware: 0
 RateLimit: []

By default, the acquisition is configured to acquire at the rate of 1000 scans per second.

Add an analog input channel for voltage measurement, using the device channel ai0:

addinput(d,"cDAQ1Mod1","ai0","Voltage");

Acquire data for 2 seconds and store it in the variable, data, then plot it:

data = read(d,seconds(2),"OutputFormat","Matrix");
plot(data)

Specify an acquisition of 4096 scans of data. Changing the number of scans changes the duration of
the acquisition to 4.096 seconds at the default rate of 1000 scans per second.

Acquire the data and store it in the variable data, and then plot it:

data = read(d,4096,"OutputFormat","Matrix");
plot(data)

See Also

Related Examples
• “Acquire Data in the Background” on page 6-4

6 Analog Input and Output

6-2

Acquire Data from Multiple Channels
This example shows how to acquire data from multiple channels, and from multiple devices on the
same chassis. In this example, you acquire voltage data from an NI 9201 device with ID cDAQ1Mod4
and an NI 9205 device with ID cDAQ1Mod1.

Create a DataAcquisition object and add two analog input voltage channels for cDAQ1Mod1 with
channel IDs 0 and 1:

d = daq("ni");
addinput(d,"cDAQ1Mod1",0:1,"Voltage")

ch =

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ___________ _______ ________________ __________________ _______________

 1 "ai" "cDAQ1Mod1" "ai0" "Voltage (Diff)" "-10 to +10 Volts" "cDAQ1Mod1_ai0"
 2 "ai" "cDAQ1Mod1" "ai1" "Voltage (Diff)" "-10 to +10 Volts" "cDAQ1Mod1_ai1"

Add an additional channel for a separate device, cDAQ1Mod6 with channel ID 0. For NI devices, use
either a terminal name, like ai0, or a numeric equivalent like 0. Then view all channels on the
DataAcquisition.
ch = addinput(d,"cDAQ1Mod6","ai0","Voltage");
d.Channels

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ___________ _______ ________________ __________________ _______________

 1 "ai" "cDAQ1Mod1" "ai0" "Voltage (Diff)" "-10 to +10 Volts" "cDAQ1Mod1_ai0"
 2 "ai" "cDAQ1Mod1" "ai1" "Voltage (Diff)" "-10 to +10 Volts" "cDAQ1Mod1_ai1"
 3 "ai" "cDAQ1Mod6" "ai0" "Voltage (Diff)" "-10 to +10 Volts" "cDAQ1Mod6_ai0"

Acquire one second of data and store it in the variable data, and then plot it:

data = read(d,seconds(1),"OutputFormat","Matrix");
plot(data)

Change the properties of the channel ai0 on cDAQ1Mod6 and display ch:
ch.TerminalConfig ="SingleEnded";
ch.Name = "Velocity sensor";
ch

ch =

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ___________ _______ ____________________ __________________ _________________

 1 "ai" "cDAQ1Mod6" "ai0" "Voltage (SingleEnd)" "-10 to +10 Volts" "Velocity sensor"

Acquire the data and store it in the variable, data, and plot it:

data = read(d,seconds(1),"OutputFormat","Matrix");
plot(data)

See Also

Related Examples
• “Acquire Data in the Foreground” on page 6-2
• “Acquire Data in the Background” on page 6-4

 Acquire Data from Multiple Channels

6-3

Acquire Data in the Background
This example shows how to acquire data in the background using callbacks while MATLAB continues
to run.

A background acquisition depends on callbacks to allow your code to access data as the hardware
acquires it and to react to any errors as they occur. In this example, you acquire data from an NI
9205 device with ID cDAQ1Mod1 using the ScansAvailableFcnCount property to trigger the
function call defined by the ScansAvailableFcn property.

Create an NI DataAcquisition object with an analog input voltage channel on cDAQ1Mod1:

d = daq("ni");
ch = addinput(d,"cDAQ1Mod1","ai0","Voltage");

Create a simple callback function to plot the acquired data and save it as plotMyData.m in your
working directory. Enter the following code in the file:
 function plotMyData(obj,evt)
% obj is the DataAcquisition object passed in. evt is not used.
 data = read(obj,obj.ScansAvailableFcnCount,"OutputFormat","Matrix");
 plot(data)
 end

Set the callback function property to use your function.

d.ScansAvailableFcn = @plotMyData;

Start the acquisition to run for 5 seconds in the background.

start(d,"Duration",5))

Speak into the microphone and watch the plot. It updates 10 times per second.

See Also

Related Examples
• “Acquire Data in the Foreground” on page 6-2

6 Analog Input and Output

6-4

Acquire Bridge Measurements
This example shows how to acquire and plot data from an NI USB-9219 device. The device ID is
cDAQ1Mod7.

Create a DataAcquisition object assigned to the variable d:

d = daq("ni");

Add an analog input channel for Bridge measurement type, assigned to the variable ch:

ch = addinput(d,"cDAQ1Mod7","ai1","Bridge");

You might see this warning:
Warning: The Rate property was reduced to 2 due to the default ADCTimingMode of this device,
which is 'HighResolution'.
To increase rate, change ADCTimingMode on this channel to 'HighSpeed'.

To allow a higher acquisition rate, change the channel ADCTimingMode to 'HighSpeed':

ch.ADCTimingMode = "HighSpeed"

You might see this warning:
Warning: This property must be the same for all channels on this device. All channels
associated with this device were updated.

Change the acquisition rate to 10 scans per second.

d.Rate = 10;

Set the channel BridgeMode to 'Full', which uses all four resistors in the device to acquire the
voltage values:

ch.BridgeMode = "Full"

ch =

Data acquisition analog input channel 'ai1' on device 'cDAQ1Mod7':

 BridgeMode: Full
 ExcitationSource: Internal
 ExcitationVoltage: 2.5
NominalBridgeResistance: 'Unknown'
 Range: -0.063 to +0.063 VoltsPerVolt
 Name: empty
 ID: 'ai1'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'Bridge'
 ADCTimingMode: HighSpeed

Set the resistance of the bridge device to 350 ohms:

ch.NominalBridgeResistance = 350

ch =

Data acquisition analog input channel 'ai1' on device 'cDAQ1Mod7':

 BridgeMode: Full
 ExcitationSource: Internal
 ExcitationVoltage: 2.5
NominalBridgeResistance: 350
 Range: -0.063 to +0.063 VoltsPerVolt

 Acquire Bridge Measurements

6-5

 Name: empty
 ID: 'ai1'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'Bridge'
 ADCTimingMode: HighSpeed

Save the acquired data to a variable and start the acquisition:

data = read(d,seconds(1),"OutputFormat","Matrix")

Plot the acquired data:

plot(data)

See Also

Related Examples
• “Acquire Data in the Foreground” on page 6-2
• “Acquire Data in the Background” on page 6-4

6 Analog Input and Output

6-6

Acquire Sound Pressure Data
This example shows how to acquire sound data from an NI 9234. The device is in an NI cDAQ-9178
chassis, in slot 3 with ID cDAQ1Mod3.

Create a DataAcquisition object, and add an analog input channel with Microphone measurement
type:

d = daq('ni');
ch = addAnalogInputChannel(d,"cDAQ1Mod3",0,"Microphone");

Set the channel sensitivity to 0.037 v/pa.

ch.Sensitivity = 0.037

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 0.037
MaxSoundPressureLevel: 136
 ExcitationCurrent: 0.002
 ExcitationSource: Internal
 Coupling: AC
 TerminalConfig: PseudoDifferential
 Range: -135 to +135 Pascals
 Name: ''
 ID: 'ai0'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'Microphone'
 ADCTimingMode: ''

Change the maximum sound pressure level to 100 dB.

ch.MaxSoundPressureLevel = 100

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 0.037
MaxSoundPressureLevel: 100
 ExcitationCurrent: 0.002
 ExcitationSource: Internal
 Coupling: AC
 TerminalConfig: PseudoDifferential
 Range: -135 to +135 Pascals
 Name: ''
 ID: 'ai0'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'Microphone'
 ADCTimingMode: ''

Acquire 4 seconds of data and save it in a variable.

[data,time] = read(d,seconds(4),"OutputFormat","Matrix");

Plot the data.

plot(time,data)

 Acquire Sound Pressure Data

6-7

See Also

Related Examples
• “Acquire Data in the Foreground” on page 6-2
• “Acquire Data in the Background” on page 6-4

6 Analog Input and Output

6-8

Acquire IEPE Data
This example shows how to acquire IEPE data using an NI 9234. The device is in an NI cDAQ-9178
chassis in slot 3 with ID cDAQ1Mod3.

Create a DataAcquisition object, and add an analog input channel with IEPE measurement type.

d = daq("ni");
ch = addinput(d,"cDAQ1Mod3",0,"IEPE");

Change the channel ExcitationCurrent property value to 0.004 volts.

ch.ExcitationCurrent = .004;

Acquire the data against time and save it in a variable.

[data,time] = read(d,seconds(1.35),"OutputFormat","Matrix");

Plot the data.

plot(time,data)

 Acquire IEPE Data

6-9

See Also

Related Examples
• “Acquire Data in the Foreground” on page 6-2
• “Acquire Data in the Background” on page 6-4

6 Analog Input and Output

6-10

Generate Signals in the Foreground
This example shows how to generate data using an NI 9263 device with ID cDAQ1Mod2.

Create a DataAcquisition object assigned to the variable d:

d = daq("ni");

Change the scan rate of the DataAcquisition to generate 10,000 scans per second:

d.Rate = 10000

d =

DataAcquisition using National Instruments(TM) hardware:

 Running: 0
 Rate: 10000
 NumScansAvailable: 0
 NumScansAcquired: 0
 NumScansQueued: 0
 NumScansOutputByHardware: 0
 RateLimit: []

Add an analog output Voltage channel:
ch = addoutput(d,"cDAQ1Mod2",0,"Voltage");

You can specify the channel ID on NI devices using a terminal name, like 'ao1', or a numeric
equivalent like 1.

Create the data to define the output signal being generated. The output scans of one channel are
defined by a column vector.

outputData = linspace(-1, 1, 2200)';

Generate the output signal. The output signal will have a duration of 0.22 seconds, based on the
length of the queued data and the specified scan rate. MATLAB waits for this foreground generation,
and returns when the generation is complete.

write(d,outputData)

See Also

Related Examples
• “Generate Signals in the Background” on page 6-13

 Generate Signals in the Foreground

6-11

Generate Signals on Multiple Channels
This example shows how to generate data from multiple channels and multiple devices. The example
generates data using channels from an NI 9263 voltage device with ID cDAQ1Mod2, and an NI 9265
current device with ID cDAQ1Mod8.

Create an NI DAtaAcquisition object and add two analog output voltage channels from cDAQ1Mod2:

d = daq("ni");
addoutput(d, "cDAQ1Mod2', 2:3, "Voltage");

Add one output current channel from cDAQ1Mod8:

addoutput(d, "cDAQ1Mod8", "ao2", "Current");

Specify the channel ID on NI devices using a terminal name, like ao1, or a numeric equivalent like 1.

Create a set of 1000 scans of data to output for all channels. Each channel output data is defined by a
column in the 1000-by-3 data matrix.

outputData(:,1) = linspace(-1,1,1000)';
outputData(:,2) = linspace(-2,2,1000)';
outputData(:,3) = linspace(0,0.02,1000)';

Generate the output signals from the data matrix.

write(d,outputData);

See Also

Related Examples
• “Generate Signals in the Foreground” on page 6-11
• “Generate Signals in the Background” on page 6-13

6 Analog Input and Output

6-12

Generate Signals in the Background
This example shows how to generate signals in the background while MATLAB continues to run.

Create an NI DataAcquisition object and add an analog output voltage channel from cDAQ1Mod2:

d = daq("ni");
addoutput(d,"cDAQ1Mod2","ao0","Voltage");

Specify the channel ID on NI devices using a terminal name, like 'ao1', or a numeric equivalent like
1.

Create the data to output:

outputData = (linspace(-1,1,5000)');

In this case, 5000 scans will run for 5 seconds.

Queue the output data:

preload(d,outputData);

Start signal output generation:

start(d);

You can execute other MATLAB commands while the generation is in progress. In this example, call
pause, which causes the MATLAB command line to wait for you to press any key.

pause

See Also

Related Examples
• “Generate Signals in the Foreground” on page 6-11

 Generate Signals in the Background

6-13

Generate Signals in the Background Continuously
This example shows how to continuously generate signals. A continuous background generation
depends on callbacks to enable continuous queuing of data and to react to any errors as they occur.
In this example, you generate from an NI 9263 device with ID cDAQ1Mod2.

A callback function is configured to run when a certain number of scans are required.

Create an NI DataAcquisition object and add an analog output voltage channel on cDAQ1Mod2:

d = daq("ni");
addoutput(d,"cDAQ1Mod2","ao0","Voltage");

Specify the channel ID on NI devices using a terminal name, like 'ao1', or a numeric equivalent like
1.

Queue a column of output data.

preload(d,linspace(1,10,1000)');

Create a simple callback function to load data 1000 samples at a time. Save the function file as
loadMoreData.m in your working folder:

function loadMoreData(obj,evt)
 % obj is the DataAcquisition object passed in. evt is not used.
 write(obj,linspace(1,10,1000)');
end

Define the ScansRequiredFcn to call your function loadMoreData:

d.ScansRequiredFcn = @loadMoreData;

This callback is executed whenever the number of queued scans falls below the threshold defined by
the property ScansRequiredFcnCount. The default threshold is defined at 0.5 seconds of data at
the default scan rate. In other words, with a default Rate at 1000 scans per second, the default
ScansRequiredFcnCount value is 500. As your device generates an output signal, when the queued
data falls below 500 scans, it triggers the ScansRequiredFcn.

d.ScansRequiredFcnCount

ans =

 500

Generate the continuous output signal:

start(d,"Continuous")

You can execute other MATLAB commands while the generation is in progress. In this example, issue
a pause, which causes the MATLAB command line to wait for you to press any key.

pause

Tip If you want to continuously generate a repeating or periodic output, preload the waveform data,
and use

6 Analog Input and Output

6-14

start(d,"RepeatOutput")

See Also

Related Examples
• “Generate Signals in the Background” on page 6-13

 Generate Signals in the Background Continuously

6-15

Acquire Data and Generate Signals Simultaneously
This example shows how to acquire data with an NI 9205 device of ID cDAQ1Mod1, while generating
signals from an NI 9263 device with ID cDAQ1Mod2.

You can acquire data and generate signals at the same time, on devices on the same chassis. When
the DataAcquisition contains output channels, the duration of a finite generation and acquisition
depends on the number of scans and the scan rate.

Create an NI DataAcquisition object and add one analog input channel on cDAQ1Mod1 and one analog
output channel on cDAQ1Mod2:

d = daq("ni");
addinput(d,"cDAQ1Mod1","ai0","Voltage");
addoutput(d,"cDAQ1Mod2","ao0","Voltage");
d.Channels

ans =

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ___________ _______ _____________________ __________________ _______________

 1 "ai" "cDAQ1Mod1" "ai0" "Voltage (SingleEnd)" "-10 to +10 Volts" "cDAQ1Mod1_ai0"
 1 "ao" "cDAQ1Mod2" "ao0" "Voltage (SingleEnd)" "-10 to +10 Volts" "cDAQ1Mod2_ao0"

Define the output signal data for 2500 scans:

outData = linspace(-1,10,2500)';

The generated output signal of 2500 scans will run for 2.5 seconds at a scan rate of 1000 samples per
second.

Generate the output signal and acquire the input data:

inData = readwrite(d,outData,"OutputFormat","Matrix");
plot(inData)

See Also

Related Examples
• “Generate Signals in the Foreground” on page 6-11
• “Generate Signals in the Background” on page 6-13
• “Acquire Data in the Foreground” on page 6-2
• “Acquire Data in the Background” on page 6-4

6 Analog Input and Output

6-16

Acquire Data with the Analog Input Recorder
This topic shows how to use the Analog Input Recorder app to view and record data from an NI
USB-6211 device.

To open the Analog Input Recorder, on the MATLAB Toolstrip, on the Apps tab, in the Test and
Measurement section, click Analog Input Recorder.

Upon opening, the Analog Input Recorder attempts to find all your attached analog and audio input
devices.

Note Opening the Analog Input Recorder deletes all your existing DataAcquisition interfaces in
MATLAB.

The DataAcquisition interface created by the Analog Input Recorder is not accessible from the
MATLAB command line.

If you plug in a device while the app is open, you must refresh the listing for access to that device. On
the Devices tab, click Refresh. Use the same procedure to remove a device from the listing after
unplugging it.

Select the device you want to use in the Device List. The app immediately starts a preview of the
analog input using default settings.

 Acquire Data with the Analog Input Recorder

6-17

Modify any scan and channel settings for your specific needs. The following image shows the app
displaying three channels of the device. Notice that the Max Rate value has changed with the
number of channels; this relationship depends on the device.

6 Analog Input and Output

6-18

Set values for Number of Scans or Duration, and Rate.

Check Continuous if you want to override the duration or number of scans. In this mode, recording
continues until you explicitly stop it.

When you are ready to start recording data, click Record.

When recording is complete, either because the specified number of scans is recorded or you click
Stop, the recorded data is assigned to the indicated MATLAB Workspace variable. By default, the
variable starts as DAQ_1, and its name is incremented with every recording, but you can specify any
valid MATLAB variable name not already in use. The variable is assigned an M-by-N timetable, where
M table rows is the number of scans and N columns is the number of channels.

The following commands show the beginning of the acquired timetable for a multiple channel
recording.

whos

 Name Size Bytes Class Attributes

 DAQ_1 1000x3 33315 timetable

View the first four rows of the timetable.

DAQ_1(1:4,:)

ans =
 4×3 timetable

 Time Dev1_ai0 Dev1_ai1 Dev1_ai2

 Acquire Data with the Analog Input Recorder

6-19

 _________ ________ ________ ________

 0 sec 4.0578 -1.9676 5.1516
 0.001 sec 2.8081 -2.5671 4.3738
 0.002 sec 1.4604 -3.0992 3.4339
 0.003 sec 0.029896 -3.5211 2.3651

The timestamp elements of the table are relative to the first scan. The absolute time of the first scan
is available in the timetable TriggerTime custom property. For example,

DAQ_1.Properties.CustomProperties.TriggerTime

 datetime

 19-Nov-2019 15:21:01.239

In the Analog Input Recorder, click Generate Script for the app to open the MATLAB editor and
display the equivalent code for recording data. The following code is generated for the finite (non-
continuous) 3-channel recording of this example.

See Also
Apps
Analog Input Recorder | Analog Output Generator

More About
• “Generate Signals with the Analog Output Generator” on page 6-21
• “Timetables”

6 Analog Input and Output

6-20

Generate Signals with the Analog Output Generator
This topic shows how to use the Analog Output Generator app to define and generate signals from an
audio device.

To open the Analog Output Generator, on the MATLAB Toolstrip, on the Apps tab, in the Test and
Measurement section, click Analog Output Generator.

Upon opening, the Analog Output Generator attempts to find all your attached analog and audio
output devices.

Note Opening the Analog Output Generator deletes all your existing DataAcquisition interfaces in
MATLAB.

The DataAcquisition interface created by the Analog Output Generator is not accessible from the
MATLAB command line.

If you plug in a device while the app is open, you must refresh the listing for access to that device. On
the Devices tab, click Refresh. Use the same procedure to remove a device from the listing after
unplugging it.

Select the device you want to use in the Device List. By default, the app immediately displays a
preview of a test signal.

Use the following steps to produce an audio output of the "Hallelujah" chorus from Handel's Messiah.

1 Select the device for your output. This might be the primary sound driver, speakers, or a headset.
2 Load the sound data into the workspace with the following command in MATLAB:

load handel

This loads two variables into your workspace. The sound data is contained in array named y. The
sampling rate is contained in the variable Fs. You will need to know the sampling rate, so display
its value.

Fs

8192

3 In the Signal Type section of the Analog Output Generator toolstrip, select Workspace Variable.
In the adjacent selection list, choose y. This indicates the source of the data for the generator to
output.

4 Enter the Fs value of 8192 in the Rate text box in the Analog Output Generator. This indicates
the sampling rate. The app should now look something like this.

 Generate Signals with the Analog Output Generator

6-21

5 Click Generate to produce the sound output.

If you were successful in producing a sound output, try experimenting with some of the settings in
the app. For example, modify the Rate value or the Number of Cycles.

Tip If you could not hear any sound, use the Test Signal option to generate a constant tone. Check
all your hardware connections and different devices in the app until you hear the tone.

In the Analog Output Generator, click Generate Script for the app to open the MATLAB Editor and
display the code for producing the signal. The code is generated for the finite (non-continuous) output
of this example.

6 Analog Input and Output

6-22

See Also
Apps
Analog Input Recorder | Analog Output Generator

More About
• “Acquire Data with the Analog Input Recorder” on page 6-17

 Generate Signals with the Analog Output Generator

6-23

Analog Devices Active Learning Module

7

Analog Devices ADALM1000 Hardware
Data Acquisition Toolbox supports the Analog Devices ADALM1000 active learning module.
ADALM1000 is an inexpensive evaluation platform designed for learning the fundamentals of
electrical engineering. You can download associated teaching materials, reference designs, and lab
projects from the Analog Devices website.

The support package lets you perform the following tasks in MATLAB with the ADALM1000:

• Generate voltages and waveforms, 0 to +5 V
• Sink or source current, -200 ma to +200 ma
• Simultaneously source voltage and measure current on the same channel
• Simultaneously source current and measure voltage on the same channel

See Also

More About
• “Generate and Measure Signals with Analog Devices ADALM1000” on page 7-3
• “Analog Devices ADALM1000 Limitations” on page B-6

External Websites
• ADALM1000 Overview

7 Analog Devices Active Learning Module

7-2

https://wiki.analog.com/university/tools/m1k

Generate and Measure Signals with Analog Devices
ADALM1000

In this section...
“Updated Function Syntax” on page 7-3
“Source Voltage and Measure Current” on page 7-3
“Generate a Pulse” on page 7-4
“Generate Waveforms” on page 7-5

Updated Function Syntax
To accommodate the ADALM1000, the following Data Acquisition Toolbox functions allow vendor-
specific argument options:

• daq and daqlist accept the vendor argument "adi".
• addinput and addoutput accept the device name argument 'SMU1' (source-measurement unit),

and the channel ID arguments 'A' and 'B' to correspond with the channel labels on the
ADALM1000 module.

Source Voltage and Measure Current
This example shows how to source a voltage while measuring current on the same channel, to
calculate load resistance. First program the ADALM1000 to provide a constant 5 V supply to the load,
and then measure the current on the same device channel.

Discover your ADALM device and view its information.

dev = daqlist("adi")

dev =

 1×4 table

 DeviceID Description Model DeviceInfo
 ________ _______________________________ ___________ ________________________

 "SMU1" "Analog Devices Inc. ADALM1000" "ADALM1000" [1×1 daq.adi.DeviceInfo]

dev{1,"DeviceInfo"}

adi: Analog Devices Inc. ADALM1000 (Device ID: 'SMU1')
 Analog input supports:
 0 to +5.0 Volts,-0.20 to +0.20 A ranges
 Rates from 100000.0 to 100000.0 scans/sec
 2 channels ('A','B')
 'Voltage','Current' measurement types

 Analog output supports:
 0 to +5.0 Volts,-0.20 to +0.20 A ranges
 Rates from 100000.0 to 100000.0 scans/sec
 2 channels ('A','B')
 'Voltage','Current' measurement types

Set up a Data Acquisition Toolbox DataAcquisition to operate the ADALM100.

 Generate and Measure Signals with Analog Devices ADALM1000

7-3

d = daq("adi")

d =

DataAcquisition using Analog Devices Inc. hardware:

 Running: 0
 Rate: 100000
 NumScansAvailable: 0
 NumScansAcquired: 0
 NumScansQueued: 0
 NumScansOutputByHardware: 0
 RateLimit: [100000 100000]

Add an analog output channel to source voltage from device channel A.

addoutput(d,"SMU1","A","Voltage");

Add an analog input channel to measure current on the same device channel A.

addinput(d,"SMU1","A","Current");

View the channel configuration.

d.Channels

ans =

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ______ _______ _____________________ __________________ __________

 1 "ao" "SMU1" "A" "Voltage (SingleEnd)" "0 to +5.0 Volts" "SMU1_A"
 2 "ai" "SMU1" "A" "Current" "-0.20 to +0.20 A" "SMU1_A_1"

Generate an output voltage, and measure the current.

V_load = 5;
write(d,V_load);
I_load = read(d,"OutputFormat","Matrix");
write(d,0); % Reset device output.
R_load = V_load/I_load

R_load =

 50.3005

Tip The ADALM1000 continues to generate the last value programmed until you release the
hardware. When you are finished with your signals, reset the device to output 0 volts.

Generate a Pulse
This example shows how to generate a 1-millisecond, 5-volt pulse, surrounded on either side by 10
milliseconds at 0 volts.

pdata = zeros(2100,1); % Column vector of 2100 samples.
pdata (1001:1100) = 5; % Pulse in middle of vector.

d = daq("adi");
addoutput(d,"SMU1","B","Voltage");

7 Analog Devices Active Learning Module

7-4

write(d,pdata)

Generate Waveforms
This example shows how to simultaneously generate a 1-kHz square wave on channel A, and a 100 Hz
sine wave on channel B. Each output lasts for 5 seconds.

The example requires two DataAcquisition channels for device channels A and B, both as output
channels for voltage.

d = daq("adi");
addoutput(d,"SMU1","A","Voltage");
addoutput(d,"SMU1","B","Voltage");

Define the two waveforms.

Sq = zeros(500000,1); % Column vectors of 500k scans.
Sw = zeros(500000,1);

% Define square wave:
for r = 1:100:499900;
 Sq(r:r+49) = 5; % Set first 50 of each 100 samples to 5 v.
end

% Define sine wave:
Sw = sin(linspace(1,500000,500000)'*2*pi/1000);
Sw = Sw + 1; % Shift for positive voltage output

View channel configuration.

d.Channels

ans =

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ______ _______ _____________________ _________________ ________

 1 "ai" "SMU1" "A" "Voltage (SingleEnd)" "0 to +5.0 Volts" "SMU1_A"
 2 "ai" "SMU1" "B" "Voltage (SingleEnd)" "0 to +5.0 Volts" "SMU1_B"

Start the output signal generation. The 500000 scans at 100000 scans per second lasts for 5 seconds.

write(d,[Sq Sw])

See Also
Functions
addinput | addoutput | daq | read | write

More About
• “Analog Devices ADALM1000 Hardware” on page 7-2
• “Analog Devices ADALM1000 Limitations” on page B-6

External Websites
• ADALM1000 Overview

 Generate and Measure Signals with Analog Devices ADALM1000

7-5

https://wiki.analog.com/university/tools/m1k

Counter Input and Output

• “Analog and Digital Counters” on page 8-2
• “Acquire Counter Input Data” on page 8-3
• “Generate Pulse Data on a Counter Channel” on page 8-6

8

Analog and Digital Counters
Use digital and analog counters to count clock ticks and external events. Counters output a pulse
train, count rising or falling edges, and measure other quantities including:

• Frequency
• Edges
• PWM
• Position
• Pulse generation

Counters enable timed acquisition and synchronization.

See Also

Related Examples
• “Acquire Counter Input Data” on page 8-3
• “Generate Pulse Data on a Counter Channel” on page 8-6

8 Counter Input and Output

8-2

Acquire Counter Input Data
In this section...
“Add Counter Input Channel” on page 8-3
“Acquire a Single Count” on page 8-3
“Acquire a Single Frequency Count” on page 8-4
“Acquire Counter Input Data in the Foreground” on page 8-4

Add Counter Input Channel
Use addinput to add a channel that acquires edge counts from a device. You can acquire a single
input data or an array by acquiring in the foreground. For more information, see “Interface
Workflow” on page 4-2.

Acquire a Single Count
This example shows how to acquire a single count of falling edges from an NI 9402 with device ID
cDAQ1Mod5. The example assumes that some external source is providing an input to the counter
channel, and that the count is accumulating over time. You can read the accumulated count at one
point in time, then reset the counter and read it again at a later time.

Step 1. Create a DataAcquisition object assigned to the variable d.

d = daq("ni");

Step 2. Add a counter input channel with an edge count measurement type.

ch = addinput(d,"cDAQ1Mod5","ctr0","EdgeCount")

ch =

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ___________ _______ ________________ _____ ________________

 1 "ci" "cDAQ1Mod5" "ctr0" "EdgeCount" "n/a" "cDAQ1Mod5_ctr0"

Step 3. Change the channel ActiveEdge property to 'Falling' and view the channel properties to
see the change.

ch.ActiveEdge = 'Falling';
get(ch)

 ActiveEdge: Falling
 CountDirection: Increment
 InitialCount: 0
 Terminal: 'PFI0'
SampleTimingType: 10388
 Name: 'cDAQ1Mod5_ctr0'
 ID: 'ctr0'
 Device: [1x1 daq.ni.DeviceInfo]
 MeasurementType: 'EdgeCount'

Step 4. Acquire a single scan reading of the counter buffer.

count = read(d)

 Acquire Counter Input Data

8-3

count =

 133

Step 5. Reset counters from the initial count and acquire an updated count value. This value is the
number of detections since resetting the counter.

resetcounters(d);
count = read(d)

count =

 71

Acquire a Single Frequency Count
This example shows how to acquire a single scan of frequency measurement from an NI 9402 with
device ID cDAQ1Mod5.

Step 1. Create a DataAcquisition object.

d = daq("ni");

Step 2. Add a counter channel with a frequency measurement type.

addinput(d,"cDAQ1Mod5","ctr0","Frequency")

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ___________ _______ ________________ _____ ________________

 1 "ci" "cDAQ1Mod5" "ctr0" "Frequency" "n/a" "cDAQ1Mod5_ctr0"

Step 3. Acquire a single scan of counter data.

f = read(d,"OutputFormat","Matrix")

f =

 9.5877e+003

Acquire Counter Input Data in the Foreground
This example shows how to acquire rising edge data from an NI 9402 with device ID cDAQ1Mod5, and
plot the acquired data.

Step 1. Create a DataAcquisition object.

d = daq("ni");

Step 2. Add a counter input channel with an edge count measurement type.

addinput(d,"cDAQ1Mod5","ctr0","EdgeCount")

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ___________ _______ ________________ _____ ________________

 1 "ci" "cDAQ1Mod5" "ctr0" "EdgeCount" "n/a" "cDAQ1Mod5_ctr0"

Step 3. Add an analog input channel for a voltage measurement type.

8 Counter Input and Output

8-4

The counter input channel requires an external clock to perform a foreground acquisition. If you do
not have an external clock, add an analog input channel from a clocked device on the same
CompactDAQ chassis to the DataAcquisition. This example uses an NI 9205 device on the same
chassis with the device ID cDAQ1Mod1. Alternatively, the analog input channel could be on the same
device as the counter channel.

addinput(d,"cDAQ1Mod1","ai1","Voltage");

Step 4. Acquire the data and assign it to the variable data, and plot the results.

data = read(d,seconds(1),"OutputFormat","Matrix");
plot(data)

The plot displays the results from both channels in the DataAcquisition:

• Edge count measurement
• Analog input data

 Acquire Counter Input Data

8-5

Generate Pulse Data on a Counter Channel

Add Counter Output Channels
Use addoutput to add a channel that generates pulses on a counter/timer subsystem. You can
generate on one channel or on multiple channels on the same device.

Generate Pulses on a Counter Output Channel
This example shows how to generate pulse data on an NI 9402 with device ID cDAQ1Mod5.

Step 1. Create a DataAcquisition object assigned to the variable d:

d = daq("ni");

Step 2. Add a counter output channel for pulse generation:
ch = addoutput(d,"cDAQ1Mod5",0,"PulseGeneration")

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ___________ _______ _________________ _____ ________________

 1 "co" "cDAQ1Mod5" "ctr0" "PulseGeneration" "n/a" "cDAQ1Mod5_ctr0"

Step 3. Configure the output counter channel properties for signal frequency and duty cycle.

ch.Frequency = 50000;
ch.DutyCycle = 0.25;

Step 4. Generate pulses in the background while MATLAB continues:

start(d,"Continuous")

Step 5. When finished, stop the DataAcquisition output.

stop(d)

See Also

More About
• “Synchronize Counter Outputs from Multiple Devices” on page 13-8

8 Counter Input and Output

8-6

Digital Operations

• “Digital Channels” on page 9-2
• “Acquire Non-Clocked Digital Data” on page 9-4
• “Acquire Digital Data Using a Shared Clock” on page 9-5
• “Acquire Digital Data Using an External Clock” on page 9-6
• “Acquire Digital Data Using a Counter Output Channel as External Clock” on page 9-8
• “Acquire Digital Data Using an External Clock via Chassis PFI Terminal” on page 9-11
• “Acquire Digital Data in Hexadecimal Values” on page 9-12
• “Generate Non-Clocked Digital Data” on page 9-13
• “Generate Digital Output Using Decimal Data Across Multiple Lines” on page 9-14
• “Generate and Acquire Data on Bidirectional Channels” on page 9-15
• “Generate Signals on Both Analog and Digital Channels” on page 9-16

9

Digital Channels
Digital subsystems transfer digital or logical values in bits via digital lines. You can perform clocked
and non-clocked digital operations using the DataAcquisition interface in the Data Acquisition
Toolbox.

Add lines of the digital subsystem as channels to your DataAcquisition using addinput, addoutput,
or addbidirectional. Digital channels can be:

• InputOnly: Allows you to read digital data.
• OutputOnly: Allows you to write digital data.
• Bidirectional: Allows you to change the direction of the channel to read or write data. You can

set the direction to Input or Output. By default the direction is Input.

Digital Clocked Operations
With clocked operations, you can acquire or generate clocked signals at a specified scan rate for a
specified duration or number of scans. These operations use hardware timing to acquire or generate
at specific times. The operation is controlled by events tied to subsystem clocks. In a clocked
acquisition, data is transferred from the device to your system memory and displays when the event
calls for the data. In signal generation, data generated from the device is stored in memory until the
configured event occurs. When an event occurs, data is sent via the digital channels to the specified
devices.

Your device might or might not have an onboard clock. However, Data Acquisition Toolbox does not
support direct access to device onboard clocks for clocked sampling when using only digital input/
output channels with a DataAcquisition object. You can enable clocked operation by adding a clock in
one of these ways:

• Import a clock from an external source. See “Acquire Digital Data Using an External Clock” on
page 9-6 for more information.

• Generate a clock from a Counter Output subsystem in your DataAcquisition and import that clock.
See “Acquire Digital Data Using a Counter Output Channel as External Clock” on page 9-8 for
more information.

• Share a clock from the analog input subsystem. See “Acquire Digital Data Using a Shared Clock”
on page 9-5 for more information.

Access Digital Subsystem Information
This example shows how to access the device digital subsystem information and find line and port
information using daqlist.

Find devices connected to your system and find the NI model USB-6509 device.

dev = daqlist("ni")

dev =

 2×4 table

 DeviceID Description Model DeviceInfo
 ________ ___________________________________ __________ _______________________

 "Dev2" "National Instruments(TM) USB-6509" "USB-6509" [1×1 daq.ni.DeviceInfo]
 "Dev3" "National Instruments(TM) USB-6211" "USB-6211" [1×1 daq.ni.DeviceInfo]

9 Digital Operations

9-2

View the subsystem information in the DeviceInfo for Dev2 using index 1.

DevInf = dev.DeviceInfo(1)

DevInf =

ni: National Instruments(TM) USB-6509 (Device ID: 'Dev2')
 Digital IO supports:
 96 channels ('port0/line0' - 'port9/line7')
 'InputOnly','OutputOnly','Bidirectional' measurement types

See Also

More About
• “Acquire Digital Data Using a Shared Clock” on page 9-5
• “Acquire Digital Data Using an External Clock” on page 9-6

 Digital Channels

9-3

Acquire Non-Clocked Digital Data
This example shows how to read digital data using two channels on an NI USB-6255

Discover NI devices connected to your system and find the ID for the NI 6255:

dev = daqlist("ni")

dev =

 3×4 table

 DeviceID Description Model DeviceInfo
 ________ ___________________________________ __________ _______________________

 "Dev1" "National Instruments(TM) USB-6255" "USB-6255" [1×1 daq.ni.DeviceInfo]
 "Dev2" "National Instruments(TM) USB-6509" "USB-6509" [1×1 daq.ni.DeviceInfo]
 "Dev3" "National Instruments(TM) USB-6211" "USB-6211" [1×1 daq.ni.DeviceInfo]

Create a DataAcquisition object and add two input lines from port 0 on Dev1:

d = daq("ni");
ch = addinput(d,"Dev1","Port0/Line0:1","Digital")

ch =

 Index Type Device Channel Measurement Type Range Name
 _____ _____ ______ _____________ ________________ _____ __________________

 1 "dio" "Dev1" "port0/line0" "InputOnly" "n/a" "Dev1_port0/line0"
 2 "dio" "Dev1" "port0/line1" "InputOnly" "n/a" "Dev1_port0/line1"

Acquire a single scan of digital data from both channels:

data = read(d,"OutputFormat","Matrix")

data =

 1 0

9 Digital Operations

9-4

Acquire Digital Data Using a Shared Clock
This example shows how to share the clock with the analog input subsystem on your device with the
digital subsystem to acquire clocked data that is automatically synchronized. You do not need any
physical connections to share the clock. For more information, see “Automatic Synchronization” on
page 13-4.

Create a DataAcquisition object and add a digital input line from port 0 line 0 on Dev1.

d = daq("ni");
addinput(d,"Dev1","Port0/Line0","Digital")

Note Not all devices support clocked digital I/O operations with hardware timing. For these devices
you can use software timed operations with single scan calls to read and write.

Devices that support clocked digital I/O operations might not support them on all ports. Check your
device specifications.

Add an analog input channel to your DataAcquisition.

addinput(d,"Dev1",0,"Voltage");
d.Channels

ans =

 Index Type Device Channel Measurement Type Range Name
 _____ _____ ______ _____________ ________________ __________________ __________________

 1 "dio" "Dev1" "port0/line0" "InputOnly" "n/a" "Dev1_port0/line0"
 2 "ai" "Dev1" "ai0" "Voltage (Diff)" "-10 to +10 Volts" "Dev1_ai0"

Read and plot the acquired digital data. The device acquires digital data at the scan rate determined
by its analog subsystem.

dataIn = read(d,seconds(1),"OutputFormat","Matrix");
plot(dataIn(1:100,1)) % Column 1 is data from the first channel.

See Also

Related Examples
• “Acquire Digital Data Using an External Clock” on page 9-6
• “Acquire Digital Data Using a Counter Output Channel as External Clock” on page 9-8

More About
• “Synchronization” on page 13-2

 Acquire Digital Data Using a Shared Clock

9-5

Acquire Digital Data Using an External Clock
This example shows how to acquire digital data in the foreground by using an external scan clock.

You can use a function generator or the on-board clock from a digital circuit. Here, a function
generator is physically wired to terminal PFI9 on device NI 6255.

Create a DataAcquisition object and add a output line at port 0 line 2 on Dev1.

d = daq("ni");
ch = addinput(d,"Dev1","Port0/Line2","Digital")

ch =

 Index Type Device Channel Measurement Type Range Name
 _____ _____ ______ _____________ ________________ _____ __________________

 1 "dio" "Dev1" "port0/line2" "InputOnly" "n/a" "Dev1_port0/line2"

Note Not all devices support clocked digital I/O operations with hardware timing. For these devices
you can use software timed operations with single scan calls to read and write.

Devices that support clocked digital I/O operations might not support them on all ports. Check your
device specifications.

Set the rate of your DataAcquisition to the expected rate of your external scan clock.

d.Rate = 1000;

Note Importing an external clock does not automatically set the scan rate of your DataAcquisition.
Manually set the DataAcquisition Rate property value to match the expected external clock
frequency.

Programmatically add a scan clock to your DataAcquisition, indicating the source as external and the
target as device terminal PFI9.

clk = addclock(d,"ScanClock","External","Dev1/PFI9")

clk =

 Clock with properties:

9 Digital Operations

9-6

 Source: 'External'
 Destination: 'Dev1/PFI9'
 Type: ScanClock

Acquire clocked digital data and plot it.

dataIn = read(d,seconds(1),"OutputFormat","Matrix");
plot(dataIn(1:100,1))

See Also

Related Examples
• “Acquire Digital Data Using a Shared Clock” on page 9-5
• “Acquire Digital Data Using a Counter Output Channel as External Clock” on page 9-8

 Acquire Digital Data Using an External Clock

9-7

Acquire Digital Data Using a Counter Output Channel as
External Clock

This example shows how to use a device counter output channel to generate pulses for an external
clock in acquiring

In this example, you generate a clock in one DataAcquisition using a counter output channel and
export the clock to another DataAcquisition that acquires digital data. The counter output and the
digital subsystem can be on the same device or on different devices.

Note Importing an external clock does not automatically set the scan rate of your DataAcquisition.
Manually set the DataAcquisition Rate property value to match the expected external clock
frequency.

Generate a Clock Using a Counter Output Channel
Create a clocked DataAcquisition with a counter output channel that continuously generates
frequency pulses in the background. You can use this channel as an external clock for a clocked
digital acquisition.

Define the clock frequency to be used for synchronizing the scan rate of your counter output as well
as the rate of your digital acquisition.

clockFreq = 100;

Create a DataAcquisition object and add a counter output channel for PulseGeneration
measurement type.

daqClk = daq("ni");
ch1 = addoutput(daqClk,"Dev1","ctr0","PulseGeneration");

Tip Make sure the counter channel you add is not being used in a different DataAcquisition,
otherwise a terminal conflict error occurs.

Save the counter output terminal ID to a variable so you can use it later to specify the external clock
that synchronizes your digital clocked operations.

9 Digital Operations

9-8

clkTerminal = ch1.Terminal;

Set the frequency of your counter channel to the clock frequency.

ch1.Frequency = clockFreq;

Use Counter Clock to Acquire Clocked Digital Data
Create a DataAcquisition for digital input and import the external clock from the clock
DataAcquisition.

Create a DataAcquisition and add a digital input line from port 0 line 2 on Dev1.

daqDgt = daq("ni");
addinput(daqDgt,"Dev1","Port0/Line2","Digital")

Note Not all devices support clocked digital I/O operations with hardware timing. For these devices
you can use software timed operations with single scan calls to read and write.

Devices that support clocked digital I/O operations might not support them on all ports. Check your
device specifications.

Tip PFI terminal resources might be shared. Check your device routing in the NI MAX app.

Set the DataAcquisition scan rate to the same value as the rate of the counter output channel.

daqDgt.Rate = clockFreq;

Import the clock from your clock DataAcquisition to synchronize your acquisition.

addclock(daqDgt,"ScanClock","External",clkTerminal)

Start the counter output channel to run continuously in the background.

start(daqClk,"Continuous")

Pulse generation begins immediately on the counter output. It does not need data.

Acquire and plot digital input data.

dataIn = read(daqDgt,seconds(1),"OutputFormat","Matrix");
plot(dataIn(1:100,1))

Stop the clock DataAcquisition.

stop(daqClk)

See Also

Related Examples
• “Acquire Digital Data Using a Shared Clock” on page 9-5

 Acquire Digital Data Using a Counter Output Channel as External Clock

9-9

• “Acquire Digital Data Using an External Clock” on page 9-6

9 Digital Operations

9-10

Acquire Digital Data Using an External Clock via Chassis PFI
Terminal

This example shows how to acquire clocked digital data using an external clock provided at the
CompactDAQ chassis PFI terminal. It uses a cDAQ 9178 chassis and NI 9402 module with ID
cDAQ2Mod3. A digital signal is connected to the module PFI0 terminal to provide a scan clock.

Create a DataAcquisition object and add the digital input line.

d = daq("ni");
addinput(d,"cDAQ2Mod3","Port0/Line0","Digital");

Add a clock specifying source and destination. Then set the DataAcquisition scan rate to match the
external clock frequency.

addclock(d,"ScanClock","External","cDAQ2/PFI0");
d.Rate = 100e3;

Acquire and plot the digital input data.

[data,timestamps] = read(d,seconds(1),"OutputFormat","Matrix");
plot(timestamps,data(1:100,1))

See Also

 Acquire Digital Data Using an External Clock via Chassis PFI Terminal

9-11

Acquire Digital Data in Hexadecimal Values
This example shows how to acquire digital data using four channels on an NI 6255.

Discover devices connected to your system and find the ID for the NI 6255.

dev = daqlist

dev =

 3×4 table

 DeviceID Description Model DeviceInfo
 ________ ___________________________________ __________ _______________________

 "Dev1" "National Instruments(TM) USB-6255" "USB-6255" [1×1 daq.ni.DeviceInfo]
 "Dev2" "National Instruments(TM) USB-6363" "USB-6363" [1×1 daq.ni.DeviceInfo]

Create a DataAcquisition and add four digital input lines from port 0 on Dev1.

d = daq("ni");
addinput(d,"Dev1","Port0/Line0:3","Digital");
d.Channels

ans =

 Index Type Device Channel Measurement Type Range Name
 _____ _____ ______ _____________ ________________ _____ __________________

 1 "dio" "Dev1" "port0/line0" "InputOnly" "n/a" "Dev1_port0/line0"
 2 "dio" "Dev1" "port0/line1" "InputOnly" "n/a" "Dev1_port0/line1"
 3 "dio" "Dev1" "port0/line2" "InputOnly" "n/a" "Dev1_port0/line2"
 4 "dio" "Dev1" "port0/line3" "InputOnly" "n/a" "Dev1_port0/line3"

Acquire digital data in hexadecimal values.

hData = binaryVectorToHex(read(d,"OutputFormat","Matrix"))

hData =

 'C'

9 Digital Operations

9-12

Generate Non-Clocked Digital Data
This example shows how to write data to two lines on an NI 6255.

Discover NI devices connected to your system and find the ID for the NI 6255.

d = daqlist("ni")

dev =

 3×4 table

 DeviceID Description Model DeviceInfo
 ________ ___________________________________ __________ _______________________

 "Dev1" "National Instruments(TM) USB-6255" "USB-6255" [1×1 daq.ni.DeviceInfo]
 "Dev2" "National Instruments(TM) USB-6363" "USB-6363" [1×1 daq.ni.DeviceInfo]

Create a DataAcquisition object and add two digital output lines from port 0 on Dev1.

d = daq("ni");
addoutput(d,"Dev1","Port0/Line0:1","Digital");
d.Channels

ans =

 Index Type Device Channel Measurement Type Range Name
 _____ _____ ______ _____________ ________________ _____ __________________

 1 "dio" "Dev1" "port0/line0" "OutputOnly" "n/a" "Dev1_port0/line0"
 2 "dio" "Dev1" "port0/line1" "OutputOnly" "n/a" "Dev1_port0/line1"

Generate digital output.

write(d,[1 0])

 Generate Non-Clocked Digital Data

9-13

Generate Digital Output Using Decimal Data Across Multiple
Lines

This example shows how to convert decimal data and output to two lines on an NI 6255.

Discover NI devices connected to your system and find the ID for the NI 6255.

d = daqlist("ni")

dev =

 3×4 table

 DeviceID Description Model DeviceInfo
 ________ ___________________________________ __________ _______________________

 "Dev1" "National Instruments(TM) USB-6255" "USB-6255" [1×1 daq.ni.DeviceInfo]
 "Dev2" "National Instruments(TM) USB-6363" "USB-6363" [1×1 daq.ni.DeviceInfo]

Create a DataAcquisition and add two digital output lines from port 0 on Dev1.

d = daq("ni");
addoutput(d,"Dev1","Port0/Line0:1","Digital");
d.Channels

ans =

 Index Type Device Channel Measurement Type Range Name
 _____ _____ ______ _____________ ________________ _____ __________________

 1 "dio" "Dev1" "port0/line0" "OutputOnly" "n/a" "Dev1_port0/line0"
 2 "dio" "Dev1" "port0/line1" "OutputOnly" "n/a" "Dev1_port0/line1"

Convert the decimal number 2 to a binary vector, and generate that digital output value on the two
lines.

write(d,decimalToBinaryVector(2))

9 Digital Operations

9-14

Generate and Acquire Data on Bidirectional Channels
This example shows how to use a bidirectional channel and read and write data using the same two
lines on an NI 6255.

Discover NI devices connected to your system and find the ID for the NI 6255.

d = daqlist("ni")

dev =

 3×4 table

 DeviceID Description Model DeviceInfo
 ________ ___________________________________ __________ _______________________

 "Dev1" "National Instruments(TM) USB-6255" "USB-6255" [1×1 daq.ni.DeviceInfo]
 "Dev2" "National Instruments(TM) USB-6363" "USB-6363" [1×1 daq.ni.DeviceInfo]

Create a DataAcquisition and add two lines from port 0 and 2 lines from port 1 on Dev1.

d = daq("ni");
addbidirectional(d,"Dev1","Port0/Line0:1","Digital");
addbidirectional(d,"Dev1","Port1/Line0:1","Digital");
d.Channels

ans =

 Index Type Device Channel Measurement Type Range Name
 _____ _____ ______ _____________ _______________________ _____ __________________

 1 "dio" "Dev1" "port0/line0" "Bidirectional (Input)" "n/a" "Dev1_port0/line0"
 2 "dio" "Dev1" "port0/line1" "Bidirectional (Input)" "n/a" "Dev1_port0/line1"
 3 "dio" "Dev1" "port1/line0" "Bidirectional (Input)" "n/a" "Dev1_port1/line0"
 4 "dio" "Dev1" "port1/line1" "Bidirectional (Input)" "n/a" "Dev1_port1/line1"

Set the direction on all channels to output data.

set(d.Channels,"Direction","Output");

Generate the digital output data.

write(d,[1 0 1 0])

Change the direction on all channels to input data

set(d.Channels,"Direction","Input");

Acquire the digital data.

read(d,"OutputFormat","Matrix")

ans =

 1 0 1 0

 Generate and Acquire Data on Bidirectional Channels

9-15

Generate Signals on Both Analog and Digital Channels
This example shows how to generate signals when the DataAcquisition contains both analog and
digital channels.

Discover NI devices connected to your system and find the ID for the NI 6255.

d = daqlist("ni")

dev =

 3×4 table

 DeviceID Description Model DeviceInfo
 ________ ___________________________________ __________ _______________________

 "Dev1" "National Instruments(TM) USB-6255" "USB-6255" [1×1 daq.ni.DeviceInfo]
 "Dev2" "National Instruments(TM) USB-6363" "USB-6363" [1×1 daq.ni.DeviceInfo]

Create a DataAcquisition and add two digital output lines from port 0 on Dev1.

d = daq("ni");
addoutput(d,"Dev1","Port0/Line0:1","Digital")

Add an analog output channel from Dev1, then view all channels.

addoutput(d,'Dev1',0,'Voltage')
d.Channels

ans =

 Index Type Device Channel Measurement Type Range Name
 _____ _____ ______ _____________ _____________________ __________________ __________________

 1 "dio" "Dev1" "port0/line0" "OutputOnly" "n/a" "Dev1_port0/line0"
 2 "dio" "Dev1" "port0/line1" "OutputOnly" "n/a" "Dev1_port0/line1"
 3 "ao" "Dev1" "ao0" "Voltage (SingleEnd)" "-10 to +10 Volts" "Dev1_ao0"

Output a single scan of data on both the digital and analog channels.

write(d, [decimalToBinaryVector(2), 1.23])

9 Digital Operations

9-16

Multichannel Audio

10

Audio Input and Output
You can acquire and generate audio signals using one or more available channels of a supported
audio device. You can also simultaneously operate channels on multiple supported audio devices.
Data Acquisition Toolbox supports audio channels for devices that work with the DirectSound
interface. You can:

• Acquire and generate audio signals either in sequence or as separate operations.
• Acquire and generate signals simultaneously where the signals may share their start time.
• Acquire audio data in the background and filter or process the input data simultaneously. You can

generate data immediately in response to the processed input data. In this case, both the
acquisition and generation operations start and stop together.

Data Acquisition Toolbox does not read directly from or write directly to audio files using the
multichannel audio feature. Instead, use the MATLAB functions audioread and audiowrite.

Multichannel Audio Scan Rate
The Rate of an audio DataAcquisition is the scan rate at which it samples audio data. All channels in
a DataAcquisition have the same scan rate. The default DataAcquisition rate for an audio
DataAcquisition is 44100 Hz. If you have multiple devices in the DataAcquisition, make sure that they
can all operate at a common scan rate.

Audio Measurement Range
Data you acquire or generate using audio channels contains double-precision values. These values
are normalized to the range of -1 to +1. The DataAcquisition represents data acquired or generated
in amplitude without units.

Acquire Audio Data
This example shows how to acquire audio data for seven seconds and plot the result.

Discover DirectSound audio devices installed on your system and create a DataAcquisition for these
devices.

dev = daqlist;

dev =

 4×4 table

 DeviceID Description Model DeviceInfo
 ________ __ __ __________________________

 "Audio0" "DirectSound Primary Sound Capture Driver" "Primary Sound Capture Driver" [1×1 daq.audio.DeviceInfo]
 "Audio1" "DirectSound Headset Microphone (Plantronics BT600)" "Headset Microphone (Plantronics BT600)" [1×1 daq.audio.DeviceInfo]
 "Audio2" "DirectSound Primary Sound Driver" "Primary Sound Driver" [1×1 daq.audio.DeviceInfo]
 "Audio3" "DirectSound Headset Earphone (Plantronics BT600)" "Headset Earphone (Plantronics BT600)" [1×1 daq.audio.DeviceInfo]

d = daq("directsound")

d =

DataAcquisition using DirectSound hardware:

10 Multichannel Audio

10-2

 Running: 0
 Rate: 44100
 NumScansAvailable: 0
 NumScansAcquired: 0
 NumScansQueued: 0
 NumScansOutputByHardware: 0
 RateLimit: []

Add an audio input channel for the microphone with id Audio1. The measurement type is Audio.

addinput(d,"Audio1",1,"Audio");

ch =

 Index Type Device Channel Measurement Type Range Name
 _____ ______ ________ _______ ________________ ______________ __________

 1 "audi" "Audio1" "1" "Audio" "-1.0 to +1.0" "Audio1_1"

Acquire 7 seconds of data in the foreground and plot the data versus time.

[data,t] = read(d, seconds(7), "OutputFormat","Matrix");
plot(t,data)

 Audio Input and Output

10-3

See Also

Related Examples
• “Generate Audio Signals” on page 18-84

10 Multichannel Audio

10-4

Waveform Function Generation

• “Digilent Analog Discovery Devices” on page 11-2
• “Digilent Function Waveform Generator Channels” on page 11-3
• “Waveform Types” on page 11-5
• “Generate a Standard Waveform Using Function Waveform Generator Channels” on page 11-8

11

Digilent Analog Discovery Devices
MATLAB supports the Digilent Analog Discovery design kit, a low-cost, portable USB DAQ device. The
kit enables project-based learning for analog circuit design. For professors and course instructors,
the kit comes with downloadable teaching materials, reference designs, and lab projects.

The Data Acquisition Toolbox Support Package for Digilent Analog Discovery hardware lets you
perform the following tasks in MATLAB:

• Read data from oscilloscope channels.
• Control and generate data from waveform generators.
• Characterize ICs and measure behavior of the circuit and IC components.
• Configure the sampling rate of the Analog Discovery device.
• Trigger the start of your data acquisition.
• Find and display Digilent Analog Discovery device settings.

See Also

Related Examples
• “Getting Started Acquiring Data with Digilent Analog Discovery” on page 18-66
• “Getting Started Generating Data with Digilent Analog Discovery” on page 18-69

More About
• “Install Hardware Support Package for Vendor Support” on page 5-2

11 Waveform Function Generation

11-2

Digilent Function Waveform Generator Channels
Waveform function generator channels on a Digilent device can generate both standard and arbitrary
function waveforms. For more information, see “Waveform Types” on page 11-5. This diagram
shows the pin configuration on a typical Digilent Analog Discovery device. The yellow and the yellow/
white lines represent the waveform generator channels, marked as W1 and W2 on the device.

To test the Analog Discovery device, create the following connection to acquire the generated
waveform, and use it with the corresponding code:

• 1+ (scope channel 1 positive) to WI through a 1K resistor.
• 1– (scope channel 1 negative) W2 to GND.

This diagram depicts these connections on a breadboard.

 Digilent Function Waveform Generator Channels

11-3

Unlike analog input channels, the waveform generator channels control their own frequency. If your
DataAcquisition contains both waveform generator channels and any other type of acquisition
channels, the waveform generator channels will have their own frequency and all other channels will
inherit the DataAcquisition scan rate. If you have analog input channels in the DataAcquisition with
waveform generator channels, the analog input channels start first and act as a trigger for the
waveform generator channels.

See Also

Related Examples
• “Generate Standard Periodic Waveforms Using Digilent Analog Discovery” on page 18-74
• “Generate Arbitrary Periodic Waveforms Using Digilent Analog Discovery” on page 18-77

More About
• “Waveform Types” on page 11-5

11 Waveform Function Generation

11-4

Waveform Types
Digilent Analog Discovery devices support generation of arbitrary waveforms, standard waveforms,
or both. If your device supports standard waveforms, you can set the gain, offset, and frequency to
control the output. Standard waveform types include:

• Sine
• Square
• Triangle
• RampUp
• RampDown
• DC

You can control the behavior of different waveform types using the associated properties. This table
shows you which properties work with the supported waveform types for Digilent devices.

 Frequency Gain Offset Phase DutyCycle
Sine ✓ ✓ ✓ ✓
Square ✓ ✓ ✓ ✓ ✓

Triangle ✓ ✓ ✓ ✓ ✓

RampUp ✓ ✓ ✓ ✓ ✓

RampDown ✓ ✓ ✓ ✓ ✓

DC ✓
Arbitrary ✓

This diagram illustrates how these properties affect a standard square waveform.

 Waveform Types

11-5

11 Waveform Function Generation

11-6

Standard waveforms cannot be clipped. You must keep gain and offset values so that the waveform
amplitude remains within voltage range. You cannot change gain and offset of arbitrary waveforms.

See Also

Related Examples
• “Generate Standard Periodic Waveforms Using Digilent Analog Discovery” on page 18-74
• “Generate Arbitrary Periodic Waveforms Using Digilent Analog Discovery” on page 18-77

More About
• “Digilent Function Waveform Generator Channels” on page 11-3

 Waveform Types

11-7

Generate a Standard Waveform Using Function Waveform
Generator Channels

This example shows how to use the function generator channel in a DataAcquisition to generate a
sine function waveform at a frequency of 100 kHz. The signal output voltage range is specified as
-5.0 to +5.0 volts

Discover available Digilent devices.
dev = daqlist("digilent")

dev =

 1×4 table

 DeviceID Description Model DeviceInfo
 ________ ___ ____________________ _______________________

 "AD1" "Digilent Inc. Analog Discovery 2 Kit Rev. C" "Analog Discovery 2" [1×1 daq.di.DeviceInfo]

Create a DataAcquisition object for Digilent devices.

d = daq("digilent")

d =

DataAcquisition using Digilent Inc. hardware:

 Running: 0
 Rate: 10000
 NumScansAvailable: 0
 NumScansAcquired: 0
 NumScansQueued: 0
 NumScansOutputByHardware: 0
 RateLimit: []

Add a waveform function generator channel for device AD1 with a Sine waveform type.

fgenCh = addoutput(d,"AD1",1,"Sine")

fgenCh =

 Index Type Device Channel Measurement Type Range Name
 _____ ______ ______ _______ ________________ ____________________ ____________

 1 "fgen" "AD1" "1" "Sine" "-5.0 to +5.0 Volts" "AD1_1_fgen"

Set the channel amplitude to 5 v using the Gain property and the channel frequency to 100 kHz.

fgenCh.Gain = 5;
fgenCh.Frequency = 100e3;

Specify the output duration to run for 5 seconds and start the generation.

write(d,seconds(5))

See Also

Related Examples
• “Generate Standard Periodic Waveforms Using Digilent Analog Discovery” on page 18-74
• “Generate Arbitrary Periodic Waveforms Using Digilent Analog Discovery” on page 18-77

11 Waveform Function Generation

11-8

Triggers and Clocks

• “Trigger Connections” on page 12-2
• “Acquire Voltage Data Using a Digital Trigger” on page 12-4
• “Clock Connections” on page 12-5

12

Trigger Connections
In this section...
“When to Use Triggers” on page 12-2
“External Triggering” on page 12-2

When to Use Triggers
Use triggers to simultaneously start all devices in the DataAcquisition. You connect a trigger source
to a trigger destination. A trigger source can be either external, where the trigger comes from a
source outside a DataAcquisition, or on a device and terminal pair within a DataAcquisition. Trigger
destination devices can be external, where the signals are received outside the DataAcquisition, or
devices within the DataAcquisition. For more information, see “Source and Destination Devices” on
page 13-3.

Note You can have multiple destinations for your trigger, but only one source.

Note You cannot use trigger and clock connections with audio channels.

External Triggering
You can configure devices in a DataAcquisition to receive an external trigger. To use an external
trigger source, your connection parameters must correctly specify the exact device and terminal
pairs to which the external source is connected. Two circumstances of externally clocked and
triggered synchronization are:

12 Triggers and Clocks

12-2

• An external hardware event that controls the operation of one or more devices in a
DataAcquisition object. For example, opening and closing a switch starts a background acquisition
on a DataAcquisition.

• An external hardware event synchronizes multiple devices in a DataAcquisition. For example,
opening and closing of a switch starts a background operation across multiple devices or
CompactDAQ chassis in a DataAcquisition.

See Also

Related Examples
• “Multiple-Device Synchronization Using USB or PXI Devices” on page 13-7
• “Multiple-Chassis Synchronization with CompactDAQ Devices” on page 13-12
• “Acquire Voltage Data Using a Digital Trigger” on page 12-4

More About
• “Synchronization” on page 13-2

 Trigger Connections

12-3

Acquire Voltage Data Using a Digital Trigger
This example shows how to use a falling edge digital trigger, which occurs when a switch closes on an
external source. The trigger is connected to terminal PFI0 on device Dev1 and starts acquiring
sensor voltage data.

Create a DataAcquisition object for NI devices.

 d = daq("ni");

Add a voltage input channel from NI USB-6211 with device ID Dev1.

addinput(d,"Dev1",0,"Voltage")

Physically connect the switch to terminal PFI0 on NI USB-6211. The trigger comes from the switch,
which is an external source. Programmatically add the trigger to the DataAcquisition, indicating
source, destination, and device PFI terminal.

t = addtrigger(d,"Digital",d.Triggers"StartTrigger","External","Dev1/PFI0")

t =

 DigitalTrigger with properties:

 Source: 'External'
 Destination: 'Dev1/PFI0'
 Type: StartTrigger
 Condition: 'RisingEdge'

Set the trigger Condition property to 'FallingEdge'.

t.Condition = 'FallingEdge';

Acquire data and store it in dataIn. The DataAcquisition waits for the trigger to occur, and starts
acquiring data when the switch closes.

dataIn = read(d,seconds(1),"OutputFormat","Matrix");

See Also

Related Examples
• “Multiple-Device Synchronization Using USB or PXI Devices” on page 13-7
• “Multiple-Chassis Synchronization with CompactDAQ Devices” on page 13-12

More About
• “Synchronization” on page 13-2
• “Trigger Connections” on page 12-2

12 Triggers and Clocks

12-4

Clock Connections
In this section...
“When to Use Clocks” on page 12-5
“Import Scan Clock from External Source” on page 12-5
“Export Scan Clock to External System” on page 12-5

When to Use Clocks
Use clocks to synchronize operations on all connected devices in the DataAcquisition. You connect a
clock source to a clock destination. A clock source can be either external, where the clock signal
comes from a source outside a DataAcquisition, or on a device and terminal pair within a
DataAcquisition. Destination devices can be external, where the signals are received outside the
DataAcquisition, or devices within the DataAcquisition. For more information, see “Source and
Destination Devices” on page 13-3.

Note You cannot use trigger and clock connections with audio channels.

Import Scan Clock from External Source
To import a scan clock from an external source, you must connect the external clock to a terminal and
device pair on a device in your DataAcquisition. Two circumstances of externally clocked
synchronization include:

• Synchronizing operations on all devices within a DataAcquisition by sharing the clock on a device
within the DataAcquisition or an external clock

• Synchronizing operations on all devices within a DataAcquisition and some external devices, by
sharing an external clock

Note Importing an external clock does not automatically set the scan rate of your DataAcquisition.
Manually set the DataAcquisition Rate property value to match the expected external clock
frequency.

Export Scan Clock to External System
This example shows how to add a scan clock to a device and output the clock to a device outside your
DataAcquisition, which is connected to an oscilloscope. The scan clock controls the operations on the
external device.

Create a DataAcquisition and add a voltage input channel from an NI USB-6211 with device ID Dev1.

d = daq("ni");
addinput(d,"Dev1",0,"Voltage")

Add a clock to the DataAcquisition, to export an external scan clock sourced at terminal PFI6 on
Dev1, and physically connect it to an external destination.

c = addclock(d,"ScanClock","Dev1/PFI6","External")

 Clock Connections

12-5

c =

 Clock with properties:

 Source: 'Dev1/PFI6'
 Destination: 'External'
 Type: ScanClock

Acquire data and store it in dataIn.

dataIn = read(d,seconds(1),"OutputFormat","Matrix");

See Also

Related Examples
• “Multiple-Device Synchronization Using USB or PXI Devices” on page 13-7
• “Multiple-Chassis Synchronization with CompactDAQ Devices” on page 13-12

More About
• “Synchronization” on page 13-2

12 Triggers and Clocks

12-6

Synchronization

• “Synchronization” on page 13-2
• “Multiple-Device Synchronization Using USB or PXI Devices” on page 13-7
• “Synchronize with PFI on CompactDAQ Chassis Without Terminals” on page 13-11
• “Multiple-Chassis Synchronization with CompactDAQ Devices” on page 13-12
• “Synchronize DSA Devices” on page 13-13

13

Synchronization
Synchronization of data acquisition operations between multiple channels or devices has two aspects:

• Start trigger: The signal to initiate all operations
• Scan clock: The timing for repeated generation or acquisition of signals at a clocked rate

Synchronization can involve the coordination of triggering, clocking, or both. To synchronize the start
of operations on multiple channels or devices, they must use a shared start trigger. To synchronize
the clocked scanning operations on multiple channels or devices, they must use a shared scan clock.

The following definitions summarize some concepts of synchronization:

Type of Synchronization Description
Start trigger synchronization Channels or devices are configured to simultaneously start their

operations from a shared start trigger.
Scan clock synchronization Channels or devices use a shared scan clock to generate or

measure signals.
Perfect synchronization Channels or devices use both a shared start trigger and a shared

scan clock. This does not imply a specific skew or latency
performance between devices or between channels on a device.

Automatic synchronization The default start trigger synchronization and scan clock
synchronization supported by a DataAcquisition, the driver, and
the hardware. This is the extent of synchronization provided by a
DataAcquisition without any explicit synchronization configuration.

When a DataAcquisition starts, it sends a start trigger signal to all
connected channels in the DataAcquisition. The driver and device
might support synchronization from that moment forward. For
example, in some devices all channels use the same internal scan
clock and a shared start trigger, so they are automatically
synchronized without further configuration of the DataAcquisition.

Shared Triggers and Shared Scan Clocks
Typical data acquisition devices provide synchronization between their channels of the same
subsystem. For example, all the analog input channels on one card use a shared scan clock. A
DataAcquisition can configure start trigger and scan clock connections for wider synchronization
needs. Use shared start triggers and shared scan clocks to synchronize data between:

• Multiple subsystems in a device (analog input, analog output, counter input, etc.)
• Multiple devices
• Multiple CompactDAQ or PXI chassis

Note Counter output channels run independently and are unaffected by synchronization connections.

13 Synchronization

13-2

Source and Destination Devices
You can share start triggers and scan clock connections to synchronize operations within a
DataAcquisition. Synchronization connections can be:

• Devices in a DataAcquisition connected to a start trigger or scan clock source on another device in
the DataAcquisition

• Devices and chassis in a DataAcquisition connected to a start trigger or scan clock source on
another device in the DataAcquisition

 Synchronization

13-3

A source device and terminal pair generates the synchronization signal and is connected to the
destination device and terminal pairs. You must physically connect the source and destination
terminals, unless they are internally connected. Check your device specifications for more
information. Synchronization connections are added from the source device to one or more
destination devices.

• The source device provides the start trigger or scan clock signals.
• The destination device receives a start trigger or scan clock signal.

For example, if you determine that a terminal on Dev1 will provide a start trigger and a terminal on
Dev2 will receive that trigger, then Dev1 becomes your source device and Dev2 your destination
device. You can have multiple destinations for your trigger and clock connections, but only one
source.

Use addtrigger to add start trigger connections, and addclock to add a scan clock connection to
your DataAcquisition.

Automatic Synchronization
In most cases, a DataAcquisition automatically starts all its devices at the same time when you start
an operation. You must configure them to start synchronously when devices are not on a single
chassis and do not share a clock. If you have not configured synchronization on such devices, the
start operation reduces the latency between devices, running them very close together to achieve
near-simultaneous signals. However, devices are automatically and perfectly synchronized in the
DataAcquisition if they are:

• Subsystems on a single device in the DataAcquisition. This synchronizes your analog input, analog
output, and counter input channels.

Note Counter output channels run independently and are unaffected by synchronization
connections.

• Modules on a single CompactDAQ chassis in the DataAcquisition.
• PXI modules synchronized with a reference clock on a PXI chassis. For perfect synchronization,

you must share a trigger as well. See “Acquire Synchronized Data Using PXI Devices” on page 13-
9 for more information.

Synchronization Scenarios
You must employ different techniques for synchronization, depending on the configurations of your
channels, devices, and chassis. The following sections describe these different scenarios.

Multiple Channels on the Same Device or Module

In this topic, hardware that performs the signal conversion when not plugged into a chassis is
referred to as a device; this includes USB devices. When the conversion hardware is a card plugged
into a chassis, it is usually referred to as a module.

Data Acquisition Toolbox DataAcquisition software is based on the assumption that all channels of the
same acquisition device or module use the same internal scan clock and start trigger. As such, these
channels meet the requirements for perfect synchronization. For most vendors, this includes digital
channels, analog channels, and counter input channels, but does not include counter output channels.

13 Synchronization

13-4

The following topics illustrate this scenario, providing automatic synchronization between multiple
channels.

• “Acquire Data from Multiple Channels using an MCC Device” on page 18-22
• “Acquiring and Generating Data at the Same Time with Digilent Analog Discovery” on page 18-71

Exceptions: Some devices do not support setting the source of the start trigger or do not internally
route start trigger signals between subsystems. These include National Instruments myDAQ and
USB-6002. In such devices, only channels of the same subsystem support start trigger
synchronization by default.

Multiple Modules in the Same CompactDAQ Chassis

Modules in the same CompactDAQ chassis use the chassis scan clock and start trigger. The Data
Acquisition Toolbox DataAcquisition interface configures the chassis scan clock rate and issues the
start trigger signal. The chassis in turn provides synchronized signals to its modules.

The following examples illustrate this scenario, providing synchronization between multiple modules
in the same chassis without external connections or extra programming.

• “Acquire Data and Generate Signals at the Same Time” on page 18-58
• “Count Pulses on a Digital Signal Using NI Devices” on page 18-99
• “Measure Frequency Using NI Devices” on page 18-102
• “Measure Pulse Width Using NI Devices” on page 18-104

Exceptions: Some CompactDAQ modules have their own onboard clocks, for example, DSA modules.

Multiple Modules in the Same PXI Chassis

Modules in a PXI chassis share a common scan clock, but a Data Acquisition Toolbox DataAcquisition
does not synchronize the start trigger for multiple modules in the chassis by default. The start
triggers of multiple DSA modules can be synchronized using the AutoSyncDSA property, while other
PXI modules require an external trigger connection for start trigger synchronization.

The following topics illustrate these scenarios, showing how to synchronize start triggers on multiple
modules.

• “Synchronize DSA Devices” on page 13-13
• “Synchronize DSA PXI Devices Using AutoSyncDSA” on page 13-8
• “Acquire Synchronized Data Using PXI Devices” on page 13-9

Multiple Devices Without Chassis or in Different Chassis

This scenario represents multiple devices or modules in their most independent configuration. The
configuration could be multiple USB devices, for example, or modules in separate chassis. Neither
the start triggers nor the scan clocks of these devices are synchronized by default.

The following topics illustrates these scenarios, showing how to synchronize start triggers and scan
clocks on multiple devices without chassis or in different chassis, by way of an external connection.

• “Acquire Synchronized Data Using USB Devices” on page 13-7
• “Multiple-Chassis Synchronization with CompactDAQ Devices” on page 13-12

 Synchronization

13-5

• “Synchronize Counter Outputs from Multiple Devices” on page 13-8
• “Acquire Data from Two Devices at Different Rates” on page 18-134

See Also

More About
• “Multiple-Device Synchronization Using USB or PXI Devices” on page 13-7
• “Synchronize DSA Devices” on page 13-13

13 Synchronization

13-6

Multiple-Device Synchronization Using USB or PXI Devices
You can synchronize multiple devices in a DataAcquisition using a shared scan clock and shared start
trigger. You can synchronize devices using either PFI or RTSI lines.

Requirement You must register your RTSI cable using the National Instruments Measurement &
Automation Explorer.

Acquire Synchronized Data Using USB Devices
This example shows how to acquire synchronized voltage data from multiple devices using a shared
start trigger and a shared scan clock. Analog input channels on all three devices are connected to the
same function generator.

Create a DataAcquisition and add one voltage input channel from each device:

• NI USB-6211 with device ID Dev1
• NI USB 6218 with device ID Dev2
• NI USB 6255 with device ID Dev3

d = daq("ni");
addinput(d,"Dev1",0,"Voltage")
addinput(d,"Dev2",0,"Voltage")
addinput(d,"Dev3",0,"Voltage")

Choose terminal PFI4 on Dev1 as the start trigger source. Connect the trigger source to the
destination terminals PFI0 on Dev2 and PFI0 on Dev3.

addtrigger(d,"Digital","StartTrigger","Dev1/PFI4","Dev2/PFI0")
addtrigger(d,"Digital","StartTrigger","Dev1/PFI4","Dev3/PFI0")

Choose terminal PFI5 on Dev1 as the scan clock source. Connect it to destination terminals PFI1 on
Dev2, and PFI1 on Dev3.

addclock(d,"ScanClock","Dev1/PFI5","Dev2/PFI1")
addclock(d,"ScanClock","Dev1/PFI5","Dev3/PFI1")

Acquire data and assign it to dataIn.

dataIn = read(d,350,"OutputFormat","Matrix");

Plot the data.

plot(dataIn)

 Multiple-Device Synchronization Using USB or PXI Devices

13-7

All channels are connected to the same function generator, so the plot displays overlapping signals,
indicating synchronization.

Synchronize Counter Outputs from Multiple Devices
This example shows how to synchronize the start trigger of counter output operations from two
channels on different devices.

d = daq("ni");
addoutput(d,"Dev1","ctr0","PulseGeneration")
addoutput(d,"Dev2","ctr0","PulseGeneration")
addtrigger(d,"Digital","StartTrigger","Dev1/PFI0","Dev2/PFI0")
start(d)

This example uses two USB or PCI devices, but could be modified for channels across CompactDAQ
or PXI chassis. If you have counter output CompactDAQ modules in the same chassis, it is not
necessary to call addtrigger; but it is required for multiple modules in the same PXI chassis.

Synchronize DSA PXI Devices Using AutoSyncDSA
This example shows how to acquire synchronized data from two Dynamic Signal Analyzer (DSA) PXI
devices, NI PXI-4462 and NI PXI-4461, using the AutoSyncDSA property.

Create a DataAcquisition and add one voltage analog input channel from each of the two PXI devices

d = daq("ni");
addinput(d,"PXI1Slot2",0,"Voltage")
addinput(d,"PXI1Slot3",0,"Voltage")

13 Synchronization

13-8

Acquire data in the foreground without synchronizing the channels:

[data,time] = read(d,seconds(1),"OutputFormat","Matrix");
plot(time,data)

The data returned is not synchronized.

Synchronize the two channels using the AutoSyncDSA property:

d.AutoSyncDSA = true;

Acquire data in the foreground and plot it:

[data,time] = read(d,seconds(1),"OutputFormat","Matrix");
plot(time,data)

The data is now synchronized.

Acquire Synchronized Data Using PXI Devices
This example shows how to acquire voltage data from two PXI devices on the same chassis, using a
shared start trigger to synchronize operations within your DataAcquisition. PXI devices have a shared
reference clock that automatically synchronizes scan clocking. You need to add only start trigger
connections to synchronize operations in your DataAcquisition with PXI devices. Analog input
channels on all devices are connected to the same function generator.

Create a DataAcquisition and add one voltage input channel from each NI-PXI 4461 device with IDs
PXI1Slot2 and PXI1Slot3.

d = daq("ni");
addinput(d,"PXI1Slot2",0,"Voltage")
addinput(d,"PXI1Slot3",0,"Voltage")

Add a start trigger connection to terminal PXI_Trig0 on PXI1Slot2 and connect it to terminal
PXI_Trig0 on PXI1Slot3. PXI cards are connected through the chassis backplane, so you do not
have to wire them physically.
addtrigger(d,"Digital","StartTrigger","PXI1Slot2/PXI_Trig0","PXI1Slot3/PXI_Trig0")

Acquire data and assign it to dataIn.

dataIn = read(d,seconds(1),"OutputFormat","Matrix");

Plot the data.

plot(dataIn)

 Multiple-Device Synchronization Using USB or PXI Devices

13-9

All channels are connected to the same function generator and have a shared reference clock. The
signals overlap, indicating synchronization.

See Also

More About
• “Multiple-Chassis Synchronization with CompactDAQ Devices” on page 13-12
• “Generate Pulse Data on a Counter Channel” on page 8-6

13 Synchronization

13-10

Synchronize with PFI on CompactDAQ Chassis Without
Terminals

This example shows how to use the external trigger and external clock functionality on a
CompactDAQ 9174 chassis without PFI terminals, by using the PFI terminals on digital I/O
CompactDAQ modules 9402 with ID cDAQ2Mod3 and 9201 with ID cDAQ2Mod4.

Some CompactDAQ chassis (e.g., NI 9174 and 9172) do not support built-in triggers, because they do
not have external BNC PFI connectors on the chassis itself. However, the PFI pins for these chassis
can be accessed through a digital module such as the NI 9402.

Add a start trigger from an external source.

d = daq("ni");
addinput(d,"cDAQ2Mod4","ai0","Voltage")
addtrigger(d,"Digital","StartTrigger","External","cDAQ2Mod3/PFI0")
[data,timestamps] = read(d,seconds(1),"OutputFormat","Matrix");
plot(timestamps,data)

Use an external scan clock from a function generator providing a 100 kHz clock to terminal PFI1 on
NI 9402.

d = daq("ni");
addinput(d,"cDAQ2Mod3","Port0/Line2","Digital")
addclock(d,"ScanClock","External","cDAQ2Mod3/PFI1)
d.Rate = 100E+3;
[data,timestamps] = read(d,seconds(1),"OutputFormat","Matrix");
plot(timestamps,data);

Tip If you want your devices to run at multiple scan rates, use two separate DataAcquisition objects
with different scan rate settings.

See Also

See Also

Related Examples
• “Start a Multi-Trigger Acquisition on an External Event” on page 18-126
• “Acquire Data from Two Devices at Different Rates” on page 18-134

 Synchronize with PFI on CompactDAQ Chassis Without Terminals

13-11

Multiple-Chassis Synchronization with CompactDAQ Devices
This example shows how to acquire voltage data from two devices, each on a separate CompactDAQ
chassis, using a shared trigger and clock to synchronize operations within your DataAcquisition.

You can synchronize multiple CompactDAQ chassis in a DataAcquisition using one chassis to provide
clocking and triggering for all chassis in the DataAcquisition. Clock and trigger sources are attached
to terminals on the chassis, itself. All modules on the chassis as well as other connected devices, are
synchronized using these signals.

Create a DataAcquisition and add channels. Add one voltage input channel each from the two NI
9201 devices with IDs cDAQ1Mod1 and cDAQ2Mod1.

d = daq("ni");
addinput(d,"cDAQ1Mod1",0,"Voltage")
addinput(d,"cDAQ2Mod1",0,"Voltage")

Choose terminal PFI0 on cDAQ1 as your trigger source, and connect it to destination terminal PFI0
on cDAQ2. Make sure the wiring on the hardware runs between these two terminals. Note that you
are using the chassis and terminal pair here, not device and terminal pair.
addtrigger(d,"Digital","StartTrigger","cDAQ1/PFI0","cDAQ2/PFI0")

Choose terminal PFI1 on cDAQ1 as your clock source, and connect it to destination terminal PFI1 on
cDAQ2. Make sure the wiring on the hardware runs between these terminals.

addclock(d,"ScanClock","cDAQ1/PFI1","cDAQ2/PFI1")

Acquire data and assign it to dataIn.

dataIn = read(d,seconds(1),"OutputFormat","Matrix");

See Also

More About
• “Synchronize Counter Outputs from Multiple Devices” on page 13-8

13 Synchronization

13-12

Synchronize DSA Devices
The Digital Signal Analyzer (DSA) product family is designed to make highly accurate audio
frequency measurements. You can synchronize other PCI and PXI product families using “Trigger
Connections” on page 12-2 and “Clock Connections” on page 12-5. To synchronize PXI and PCI
families of DSA devices you need to use a sample clock with time-based synchronization or a
reference clock time-based synchronization. The DataAcquisition AutoSyncDSA property allows you
to automatically enable both homogeneous and heterogeneous synchronization between PCI and PXI
device families. The AutoSyncDSA property automatically configures all the necessary clocks,
triggers, and sync pulses needed to synchronize DSA devices in your DataAcquisition.

PXI DSA Devices
PXI devices are synchronized using the PXI chassis backplane, which includes timing and triggering
buses. You can automatically synchronize these device series both homogeneously (within the same
series) and heterogeneously (across separate series) in the same DataAcquisition, including the
following:

• PXI/e 446x series
• PXI/e 449x series
• PXI 447x series

Hardware Restrictions
Before you synchronize, ensure that your device combinations adhere to these hardware restrictions:

PXI/e 446x and 449x Series

Chassis restriction
You can synchronize these series using either a PXI or a PXIe chassis. Make sure all your modules
are on the same chassis.

Slot placement restriction
You can use any slot on the chassis that supports your module.

PXI 447x Series

Chassis restriction
You can synchronize this series both homogeneously and heterogeneously only on a PXI chassis.
You can use them on a PXIe chassis to acquire unsynchronized data.

Slot placement restriction
On the PXI chassis, only the system timing slot can drive the trigger bus. Refer to your device
manual to find the system timing slot. This image shows the system timing slot on a PXIe 1062Q
chassis.

• Homogeneous synchronization: You can synchronize PXI 447x devices homogeneously if one
device is plugged into the system timing slot of a PXI chassis.

• Heterogeneous synchronization:

 Synchronize DSA Devices

13-13

• You can synchronize a PXI 447x device with a PXI 446x device when the 446x is plugged
into the system timing slot of a PXI chassis.

• You cannot synchronize PXI 447x devices with PXI 449x devices.
• You cannot use hybrid-slot compatible 446x devices.

DSA Device Compatibility Table

 446x Series 447x Series 449x Series
446x
Series

✓ • PXI chassis only
• Standard 446x device, not

hybrid-slot compatible
• 446x device in system timing

slot

✓

447x
Series

• PXI chassis only
• Standard 446x device, not

hybrid-slot compatible
• 446x device in system timing

slot

• PXI chassis only
• One device in system timing slot

449x
Series

✓ ✓

PCI DSA Devices
PCI devices are synchronized use the RTSI cable. You can automatically synchronize these device
series both homogeneously (within the same series) and heterogeneously (across separate series) in
the same DataAcquisition when they are connected with a RTSI cable. Support includes the following:

• PCI 446x series
• PCI 447x series

Note If you are synchronizing PCI devices make sure you register the RTSI cables in Measurement
and Automation Explorer. For more information, see the NI knowledge base article Real-Time System
Integration (RTSI) and Configuration Explained.

Synchronize DSA PCI Devices
This example shows how to acquire synchronized data from two DSA PCI devices, NI PCI-4461 and
NI PCI-4462.

Connect the two devices with a RTSI cable.

Register your RTSI cable in Measurement and Automation Explorer.

Create a DataAcquisition and add one voltage analog input channel from each of the two PCI devices

d = daq("ni");
addinput(d,"Dev1",0,"Voltage")
addinput(d,"Dev2",0,"Voltage")

13 Synchronization

13-14

https://www.ni.com/en-us/support/documentation/supplemental/18/real-time-system-integration--rtsi--and-configuration-explained.html
https://www.ni.com/en-us/support/documentation/supplemental/18/real-time-system-integration--rtsi--and-configuration-explained.html

Synchronize the two channels using the AutoSyncDSA property:

d.AutoSyncDSA = true;

Acquire data in the foreground and plot it:

[data,time] = read(d,seconds(1),"OutputFormat","Matrix");
plot(time,data)

Handle Filter Delays with DSA Devices
DSA devices have a built in digital filter. You must account for filter delays when synchronizing
between heterogeneous devices. Refer to your device manuals for filter delay information. For more
information, see the NI knowledge base article Synchronized Data Delayed When Using DSA Devices.

Example 13.1. Account for Filter Delays

This example shows how to account for filter delays when you use the same sine wave to acquire from
two different channels from two different PXI devices. Perfectly synchronized channels will show zero
phase lag between the two acquired signals.

Create a DataAcquisition and add two analog input channels with 'Voltage' measurement type,
from National Instruments PXI-4462 and NI PXI-4472.

d = daq("ni");
ch1 = addinput(d,"PXI1Slot2",0,"Voltage");
ch2 = addinput(d,"PXI1Slot3",0,"Voltage");

Acquire unsynchronized data and plot it:

[data,time] = read(d,seconds(1),"OutputFormat","Matrix");
plot(time,data)

Use AutoSyncDSA to automatically configure the triggers, clocks, and sync pulses of the channels to
synchronize the devices:

d.AutoSyncDSA = true;

Acquire synchronized data:

[data,time] = read(d,seconds(1),"OutputFormat","Matrix");
plot(time,data)

The data sheets for the NI PXI 4462 and PXI-4472 indicate a phase lag for each to be 63 and 38
samples, respectively, when the EnhancedAliasRejectionEnable property is disabled. Check to
make sure that this property is set to false or 0 on both channels:

ch1.EnhancedAliasRejectionEnable

ans =

 0

ch2.EnhancedAliasRejectionEnable

ans =

 0

 Synchronize DSA Devices

13-15

https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z000000P8toSAC

Visually verify in the plotted data that the phase difference is 25 samples apart.

See Also

More About
• “Synchronize DSA PXI Devices Using AutoSyncDSA” on page 13-8

13 Synchronization

13-16

Transition Your Code to New Interfaces

14

Transition Your Code from Session to DataAcquisition Interface
This topic helps you transition your code from the session interface to the DataAcquisition interface.

Transition Common Workflow Commands
This table lists the session interface commands for common workflows and their corresponding
DataAcquisition interface commands.

To do this Session Command DataAcquisition Command
Find supported hardware available
to your system

daq.getDevices daqlist

Reset toolbox to initial state daqreset daqreset

Create interface object s = daq.createSession('ni') d = daq("ni");

Add analog input channel addAnalogInputChannel(s,'Dev1',1,'Voltage')addinput(d,"Dev1","ai1","Voltage")

Add analog output channel addAnalogOutputChannel(s,'Dev1',0,'Current')addoutput(d,"Dev1","ao1","Current")

Add digital input line addDigitalChannel...
 (s,'Dev1','Port0/Line0:1','InputOnly')

addinput(d,"Dev1","port0/line1","Digital");

Add counter input channel addCounterInputChannel...
 (s,'Dev1','ctr0','EdgeCount')

addinput(d,"Dev1","ctr0","EdgeCount");

Queue data for output queueOutputData(s,outputSignal);preload(d,outputSignal);

(Necessary only for background
operation.)

Start operation startForeground(s);

startBackground(s);

For foreground operations that
block MATLAB when running:

write(d,signalData)

read(d,8000)

readwrite(d,8000)

For background operations that run
without blocking MATLAB:

preload(d,outputSignal);
start(d)

Set data scan rate s.rate = 48000 d.Rate = 48000;

Specify external trigger addTriggerConnection...
 (s,'External','Dev3/PFI0','StartTrigger');

addtrigger(d,"Digital","StartTrigger","External","Dev3/PFI0");

Specify input signal range ch = addAnalogInputChannel...
 (s,'Dev1',1,'Voltage');
ch.Range = [-5 5];

ch = addinput(d,"Dev1","ai4","Voltage");
ch.Range = [-5 5];

14 Transition Your Code to New Interfaces

14-2

Acquire Analog Data
Session Interface

Using the session interface, you create a vendor session and add channels to the session. You can use
any device or chassis from the same vendor available to your system and can add a combination of
analog, digital, and counter input and output channels. All the channels operate together when you
start the session.

1 Find hardware available to your system.

d = daq.getDevices
2 Create a session for National Instruments devices.

s = daq.createSession('ni');
3 Set the session scan rate to 8000.

s.Rate = 8000
4 Add an analog input channel for the device with ID Dev1 for voltage measurement, and then start

the acquisition.

addAnalogInputChannel(s,'Dev1',1,'Voltage');
startForeground(s);

DataAcquisition Interface

1 Find hardware available to your system.

devs = daqlist
2 Create a DataAcquisition for National Instruments devices.

d = daq("ni");
3 Set the DataAcquisition scan rate to 8000.

d.Rate = 8000
4 Add an analog input channel for the device with ID Dev1 for voltage measurement, and then

start the acquisition.

addinput(d,"Dev1","ai1","Voltage");
data = read(d,4000);

Scan results are returned to the timetable data.

Use Triggers
Acquire analog data using hardware triggers.

Session Interface

You can specify an external event to trigger data acquisition using the session interface.

1 Create a session and add two analog input channels.

s = daq.createSession('ni');
ch = addAnalogInputChannel(s,'Dev1',0:1,'Voltage');

 Transition Your Code from Session to DataAcquisition Interface

14-3

2 Configure the terminal and range of the channels in the session.

ch(1).TerminalConfig = 'SingleEnded';
ch(1).Range = [-10.0 10.0];
ch(2).TerminalConfig = 'SingleEnded';
ch(2).Range = [-10.0 10.0];

3 Create an external trigger connection and set the trigger to run one time.

addTriggerConnection(s,'External','Dev1/PFI0','StartTrigger');
s.Connections(1).TriggerCondition = 'RisingEdge';
s.TriggersPerRun = 1;

4 Set the rate and the duration of the acquisition.

s.Rate = 50000;
s.DurationInSeconds = 0.01;

5 Acquire data in the foreground and plot the data.

[data,timestamps] = startForeground(s);
plot(timestamps,data)

DataAcquisition Interface

1 Create a DataAcquisition and add two analog input channels.

d = daq("ni");
ch = addinput(d,"Dev1",0:1,"Voltage");

2 Configure the terminal configuration and range of the channels in the DataAcquisition.

ch(1).TerminalConfig = "SingleEnded";
ch(1).Range = [-10.0 10.0];
ch(2).TerminalConfig = "SingleEnded";
ch(2).Range = [-10.0 10.0];

3 Create an external trigger connection and set the trigger to run one time.

addtrigger(d,"Digital","StartTrigger","Dev1/PFI0","External");
d.DigitalTriggers(1).Condition = "RisingEdge";
d.NumDigitalTriggersPerRun = 1;

4 Set the scan rate of the acquisition.

d.Rate = 50000;
5 Acquire data in the foreground for 0.01 seconds and plot the data from all channels.

data = read(d,seconds(0.01));
plot(data.Time, data.Variables)

Initiate an Operation When Number of Scans Exceeds Specified Value
You can specify your acquisition to watch for a specified number of scans to occur and then initiate
some operation.

Session Interface

The session interface uses listeners and events to trigger certain actions. The
NotifyWhenDataAvailableExceeds property can fire a DataAvailable event. A listener defines
the operation to execute at that time.

14 Transition Your Code to New Interfaces

14-4

1 Create an acquisition session, add an analog input channel.

s = daq.createSession('ni');
addAnalogInputChannel(s,'Dev1','ai0','Voltage');

2 Set the scan rate to 800,000 scans per second, which automatically sets the DataAvailable
notification to automatically fire 10 times per second.

s.Rate = 800000;
s.NotifyWhenDataAvailableExceeds

ans =
 80000

3 Increase NotifyWhenDataAvailableExceeds to 160,000.

s.NotifyWhenDataAvailableExceeds = 160000;
4 Add a listener to determine the function to call when the event occurs.

L = addlistener(s,'DataAvailable', ...
 @(src,event)readAndLogData(src));

DataAcquisition Interface

The DataAcquisition interface uses callback functions that execute at occurrences determined by
certain properties. The ScansAvailableFcnCount property determines when to initiate the
callback function defined by ScansAvailableFcn.

1 Create a DataAcquisition interface and add an analog input channel.

d = daq("ni");
ch = addinput(d,"Dev1",1,"Voltage");

2 Set the scan rate to 800,000 scans per second, which automatically adjusts the
ScansAvailableFcnCount property.

d.Rate = 800000;
d.ScansAvailableFcnCount

 80000
3 Increase ScansAvailableFcnCount to 160,000.

d.ScansAvailableFcnCount = 160000;
4 Identify a callback function for when the count occurs.

d.ScansAvailableFcn = @readAndLogData;

Analog Output Generator Code
To compare session interface code and DataAcquisition interface code you can use the code
generated by the Analog Output Generator in MATLAB releases R2019b and R2020a. In both these
examples, the generator created a 10 Hz test signal sine wave for 1 second on a single channel of a
National Instruments USB-6211.
%% Auto-generated by Data Acquisition Toolbox Analog Output Generator in MATLAB R2020a.
%% Create DataAcquisition Object
% Create a DataAcquisition object for the specified vendor.

d = daq("ni");
%% Add Channels

 Transition Your Code from Session to DataAcquisition Interface

14-5

% Add channels and set channel properties, if any.

addoutput(d,"Dev1","ao0","Voltage");
%% Set DataAcquisition Rate
% Set scan rate.

d.Rate = 250000;
%% Define Test Signal
% Create a test sine wave signal of specified peak-to-peak amplitude for each
% channel.

amplitudePeakToPeak_ch1 = 20;

sineFrequency = 10; % 10 Hz
totalDuration = 1; % 1 seconds

outputSignal = [];
outputSignal(:,1) = createSine(amplitudePeakToPeak_ch1/2, ...
 sineFrequency, d.Rate, "bipolar", totalDuration);
outputSignal(end+1,:) = 0;
%% Generate Signal
% Write the signal data.

write(d,outputSignal);
%% Clean Up
% Clear all DataAcquisition and channel objects.

clear d outputSignal
%% Create Test Signal
% Helper function for creating test sine wave signal.

function sine = createSine(A, f, sampleRate, type, duration)

numSamplesPerCycle = floor(sampleRate/f);
T = 1/f;
timestep = T/numSamplesPerCycle;
t = (0 : timestep : T-timestep)';

if type == "bipolar"
 y = A*sin(2*pi*f*t);
elseif type == "unipolar"
 y = A*sin(2*pi*f*t) + A;
end

numCycles = round(f*duration);
sine = repmat(y,numCycles,1);
end

%% Auto-generated by Data Acquisition Toolbox Analog Output Generator in MATLAB R2019b
%% Create Data Acquisition Session
% Create a session for the specified vendor.

s = daq.createSession('ni');
%% Set Session Properties
% Set properties that are not using default values.

s.Rate = 250000;
%% Add Channels to Session
% Add channels and set channel properties.

addAnalogOutputChannel(s,'Dev1','ao0','Voltage');
%% Define Test Signal
% Create a test sine wave signal of specified peak-to-peak amplitude for each
% channel.

amplitudePeakToPeak_ch1 = 20;

sineFrequency = 10; % 10 Hz
totalDuration = 1; % 1 seconds

outputSignal(:,1) = createSine(amplitudePeakToPeak_ch1/2, ...
 sineFrequency, s.Rate, 'bipolar', totalDuration);
outputSignal(end+1,:) = 0;
%% Queue Signal Data
% Make signal data available to session for generation.

queueOutputData(s,outputSignal);
%% Generate Signal
% Start foreground generation

startForeground(s);

14 Transition Your Code to New Interfaces

14-6

%% Clean Up
% Clear the session and channels.

clear s outputSignal
%% Create Test Signal
% Helper function for creating test sine wave signal.

function sine = createSine(amplitude, frequency, sampleRate, type, duration)

sampleRatePerCycle = floor(sampleRate/frequency);
period = 1/frequency;
s = period/sampleRatePerCycle;
t = (0 : s : period-s)';

if strcmpi(type, 'bipolar')
 y = amplitude*sin(2*pi*frequency*t);
elseif strcmpi(type, 'unipolar')
 y = amplitude*sin(2*pi*frequency*t) + amplitude;
end

numCycles = round(frequency*duration);
sine = repmat(y, numCycles, 1);
end

Previous Interface Help

The DataAcquisition interface is supported in R2020a and later. If you are using an earlier release,
use the session interface instead. For more information and examples of the session interface, see
Data Acquisition Toolbox Documentation (R2019b).

 Transition Your Code from Session to DataAcquisition Interface

14-7

https://www.mathworks.com/help/releases/R2019b/daq/index.html

Functions

15

addbidirectional
Package: daq.interfaces

Add digital bidirectional channel to device interface

Syntax
addbidirectional(d,deviceID,channelID,"Digital")
ch = addbidirectional(___)
[ch,idx] = addbidirectional(___)

Description
addbidirectional(d,deviceID,channelID,"Digital") adds the digital bidirectional channel
channelID of device deviceID to the specified DataAcquisition interface, d.

The channel information is available from the DataAcquisition Channels property.

ch = addbidirectional(___) adds the channel and returns a channel object.

[ch,idx] = addbidirectional(___) adds the channel and also returns the channel index from
the DataAcquisition interface. The channel index reflects only the sequence in which channels are
added to the DataAcquisition; not to be confused with the device channel ID.

Examples

Add Bidirectional Channels to DataAcquisition

Add bidirectional digital channels to a DataAcquisition, and use indices to view their settings.

d = daq("ni");
ch1 = addbidirectional(d,"Dev1","port0/line0","Digital");
[ch2,idx2] = addbidirectional(d,"Dev1","port0/line1","Digital");
d.Channels

 Index Type Device Channel Measurement Type Range Name
 _____ _____ ______ _____________ _______________________ _____ __________________

 1 "dio" "Dev1" "port0/line0" "Bidirectional (Input)" "n/a" "Dev1_port0/line0"
 2 "dio" "Dev1" "port0/line1" "Bidirectional (Input)" "n/a" "Dev1_port0/line1"

Access one of the channel settings using its index.

d.Channels(idx2).ID

 'port0/line1'

Input Arguments
d — DataAcquisition interface
DataAcquisition object

15 Functions

15-2

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.
Example: d = daq()

deviceID — Device ID
character vector or string

Device ID specified as a character vector or string, as defined by the device vendor. Obtain the device
ID by calling daqlist.
Example: "Dev1"
Data Types: char | string

channelID — Channel ID
numeric value, character vector, or string

Channel ID specified as a numeric value, character vector, or string; often indicating the physical
location of the channel on the device. Supported values are specific to the vendor and device. You can
add multiple channels by specifying the channel ID as a numeric vector, or an array of character
vectors or strings. The index returned for this channel in the DataAcquisition display indicates the
position of this channel. This channel ID is not the same as channel index in the DataAcquisition: if
you add a channel with ID 2 as the first channel in a DataAcquisition, the DataAcquisition channel
index is 1.
Example: "port1/line1"
Data Types: char | string | numeric

Output Arguments
ch — Channel
Channel object

Channel, returned as a DigitalBidirectionalChannel object with the following properties as
described in “Channel Properties” on page 4-7:

Device
Direction
ID
MeasurementType
Name

idx — Channel index
numeric

Channel index returned as a numeric value. With this index, you can access the array of the
DataAcquisition Channels property.

See Also
Functions
addinput | addoutput | daq | daqlist | removechannel

Properties
“Channel Properties” on page 4-7

 addbidirectional

15-3

Introduced in R2020a

15 Functions

15-4

addclock
Package: daq.interfaces

Add clock connection to device interface

Syntax
addclock(d,"ScanClock",clkSrc,clkDest)
clk = addclock(___)
[clk,idx] = addclock(___)

Description
addclock(d,"ScanClock",clkSrc,clkDest) adds a clock connection to the DataAcquisition
interface for sharing, importing, or exporting a clock configuration. The created clock connection is
appended to the Clocks property of the DataAcquisition object.

clk = addclock(___) adds the clock and returns the clock object.

[clk,idx] = addclock(___) adds the clock and returns the clock object and the clock index
from the DataAcquisition interface.

Examples

Add Clocks to DataAcquisition Interface

Add clocks to a DataAcquisition interface in various configurations.

Add a clock shared between two devices.

d = daq("ni");
addinput(d,"Dev1","ai0","Voltage")
addinput(d,"Dev2","ai0","Voltage")
addclock(d,"ScanClock","Dev1/PFI0","Dev2/PFI0")

Add a clock imported from an external source.

d = daq("ni");
addinput(d,"Dev1","ai0","Voltage")
addclock(d,"ScanClock","External","Dev1/PFI0")

Add a clock exported to external destination.

d = daq("ni");
addinput(d,"Dev1","ai0","Voltage")
addclock(d,"ScanClock","Dev1/PFI0","External")

Add a scan clock from an external source supplied at terminal PXI1Slot5/PXI_Star.

 addclock

15-5

d = daq("ni");
addinput(d,"PXI1Slot5",0,"Voltage")
addclock(d,"ScanClock","External","PXI1Slot5/PXI_Star")

Input Arguments
d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.
Example: d = daq()

clkSrc — Clock signal source
string | char

Clock signal source, specified as a string or character vector indicating a device terminal, or
"external" when importing a clock from an external source.
Example: "external"
Data Types: char | string

clkDest — Clock signal destination
string | char

Clock signal destination, specified as a string or character vector indicating a device terminal, or
"external" when exporting a clock to an external destination.
Example: "external"
Data Types: char | string

Output Arguments
clk — Clock
Clock object

Clock connection, returned as a Clock object with properties Source, Destination, and Type.

idx — Clock index
numeric

Clock index, returned as a numeric value. With this index, you can access the array of the
DataAcquisition Clocks property.

See Also
Functions
daq | removeclock

Introduced in R2020a

15 Functions

15-6

addinput
Package: daq.interfaces

Add input channel to device interface

Syntax
addinput(d,deviceID,channelID,measurementType)
ch = addinput(___)
[ch,idx] = addinput(___)

Description
addinput(d,deviceID,channelID,measurementType) adds the input channel channelID from
device deviceID to the specified DataAcquisition interface, d, configured for the specified
measurement type.

The channel information is available from the DataAcquisition Channels property.

ch = addinput(___) adds the channel and returns a channel object.

[ch,idx] = addinput(___) adds the channel and also returns the channel index from the
DataAcquisition interface. The channel index indicates only the sequence in which channels are
added to the DataAcquisition; not to be confused with the device channel ID.

Examples

Add Input Channels to DataAcquisition

Add multiple input channels to a DataAcquisition, and use indices to view their settings.

d = daq('directsound');
ch1 = addinput(d,"Audio0","1","Audio");
[ch2,idx2] = addinput(d,"Audio1","1","Audio");
d.Channels

 Index Type Device Channel Measurement Type Range Name
 _____ ______ ________ _______ ________________ ______________ __________

 1 "audi" "Audio0" "1" "Audio" "-1.0 to +1.0" "Audio0_1"
 2 "audi" "Audio1" "1" "Audio" "-1.0 to +1.0" "Audio1_1"

Access one of the channel settings using its index.

d.Channels(idx2).Range

 Range with properties:

 Units: ''

 addinput

15-7

 Max: 1
 Min: -1

Input Arguments
d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.
Example: d = daq()

deviceID — Device ID
character vector or string

Device ID specified as a character vector or string, as defined by the device vendor. Obtain the device
ID by calling daqlist.
Example: "Dev1"
Data Types: char | string

channelID — Channel ID
numeric value, character vector, or string

Channel ID specified as a numeric value, character vector, or string; often indicating the physical
location of the channel on the device. Supported values are specific to the vendor and device. You can
add multiple channels by specifying the channel ID as a numeric vector, or an array of character
vectors or strings. The index returned for this channel in the DataAcquisition display indicates the
position of this channel. This channel ID is not the same as channel index in the DataAcquisition: if
you add a channel with ID 2 as the first channel in a DataAcquisition, the DataAcquisition channel
index is 1.
Example: "ai2"
Data Types: char | string | numeric

measurementType — Channel measurement type
character vector | string

Channel measurement type, specified as a character vector or string. measurementType represents
a vendor-defined measurement type. Valid measurement types include the following:

Measurement Type Subsystem
'Voltage' Analog Input
'Current' Analog Input
'Thermocouple' Analog Input
'Accelerometer' Analog Input
'RTD' Analog Input
'Bridge' Analog Input
'Microphone' Analog Input
'IEPE' Analog Input

15 Functions

15-8

Measurement Type Subsystem
'Digital' Digital I/O
'EdgeCount' Counter Input
'Frequency' Counter Input
'PulseWidth' Counter Input
'Position' Counter Input
'Audio' Audio Input

Not all devices support all types of measurement.
Example: "Voltage"
Data Types: char | string

Output Arguments
ch — Channel
channel object

Channel, returned as a channel object with properties depending on the measurement type as
described in “Channel Properties” on page 4-7.

idx — Channel index
numeric

Channel index, returned as a numeric value. With this index, you can access the array of the
DataAcquisition Channels property.

See Also
Functions
addbidirectional | addoutput | daq | daqlist | removechannel

Properties
“Channel Properties” on page 4-7

Introduced in R2020a

 addinput

15-9

addoutput
Package: daq.interfaces

Add output channel to device interface

Syntax
addoutput(d,deviceID,channelID,measurementType)
ch = addoutput(___)
[ch,idx] = addoutput(___)

Description
addoutput(d,deviceID,channelID,measurementType) adds the output channel channelID of
device deviceID to the specified DataAcquisition interface, d, configured for the specified
measurement type.

The channel information is available from the DataAcquisition Channels property.

ch = addoutput(___) adds the channel and returns a channel object.

[ch,idx] = addoutput(___) adds the channel and also returns the channel index from the
DataAcquisition interface. The channel index reflects only the sequence in which channels are added
to the DataAcquisition; not to be confused with the device channel ID.

Examples

Add Output Channels to DataAcquisition

Add multiple channels to a DataAcquisition, and use indices to view their settings.

d = daq('directsound');
ch1 = addoutput(d,"Audio3","1","Audio");
[ch2,idx2] = addoutput(d,"Audio6","1","Audio");
d.Channels

 Index Type Device Channel Measurement Type Range Name
 _____ ______ ________ _______ ________________ ______________ __________

 1 "audo" "Audio3" "1" "Audio" "-1.0 to +1.0" "Audio3_1"
 2 "audo" "Audio6" "1" "Audio" "-1.0 to +1.0" "Audio6_1"

Access one of the channel settings using its index.

d.Channels(idx2).Type

 'AudioOutputChannel'

Input Arguments
d — DataAcquisition interface
DataAcquisition object

15 Functions

15-10

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.
Example: d = daq()

deviceID — Device ID
character vector or string

Device ID specified as a character vector or string, as defined by the device vendor. Obtain the device
ID by calling daqlist.
Example: "Dev1"
Data Types: char | string

channelID — Channel ID
numeric value, character vector, or string

Channel ID specified as a numeric value, character vector, or string; often indicating the physical
location of the channel on the device. Supported values are specific to the vendor and device. You can
add multiple channels by specifying the channel ID as a numeric vector, or an array of character
vectors or strings. The index returned for this channel in the DataAcquisition display indicates the
position of this channel. This channel ID is not the same as channel index in the DataAcquisition: if
you add a channel with ID 2 as the first channel in a DataAcquisition, the DataAcquisition channel
index is 1.
Example: "ao2"
Data Types: char | string | numeric

measurementType — Channel measurement type
string | character vector

Channel measurement type, specified as a string or character vector. measurementType represents
a vendor-defined measurement type. Valid measurement types include the following:

Measurement Type Subsystem
'Voltage' Analog Output
'Current' Analog Output
'Digital' Digital I/O
'PulseGeneration' Counter Output
'Audio' Audio Output
'Sine' Function Generator
'Square' Function Generator
'Triangle' Function Generator
'RampUp' Function Generator
'RampDown' Function Generator
'DC' Function Generator
'Arbitrary' Function Generator

Not all devices support all types of measurement.
Example: "Voltage"

 addoutput

15-11

Data Types: char | string

Output Arguments
ch — Channel
channel object

Channel, returned as a channel object with properties depending on the measurement type as
described in “Channel Properties” on page 4-7.

idx — Channel index
numeric

Channel index, returned as a numeric value. With this index, you can access the array of the
DataAcquisition Channels property.

See Also
Functions
addbidirectional | addinput | daq | daqlist | removechannel

Properties
“Channel Properties” on page 4-7

Introduced in R2020a

15 Functions

15-12

addtrigger
Package: daq.interfaces

Add trigger connection to device interface

Syntax
addtrigger(d,"Digital","StartTrigger",trigSrc,trigDest)
trg = addtrigger(___)
[trg,idx] = addtrigger(___)

Description
addtrigger(d,"Digital","StartTrigger",trigSrc,trigDest) adds a trigger connection to
the DataAcquisition interface. The created connection is appended to the DigitalTriggers
property of the DataAcquisition object.

trg = addtrigger(___) adds the trigger and returns the trigger object.

[trg,idx] = addtrigger(___) adds the trigger and returns the trigger object and the trigger
index from the DataAcquisition interface.

Examples

Add Trigger to DataAcquisition Interface

Add triggers to a DataAcquisition interface in various configurations.

Add a trigger shared between two devices.

d = daq("ni");
addinput(d,"Dev1","ai0","Voltage")
addinput(d,"Dev2","ai0","Voltage")
addtrigger(d,"Digital","StartTrigger","Dev1/PFI0","Dev2/PFI0")

Add a trigger imported from an external source.

d = daq("ni");
addinput(d,"Dev1","ai0","Voltage")
addtrigger(d,"Digital","StartTrigger","External","Dev1/PFI0")

Add a trigger exported to an external destination.

d = daq("ni")
addinput(d,"Dev1","ai0","Voltage")
addtrigger(d,"Digital","StartTrigger","Dev1/PFI0","External")

Add a trigger from an external source supplied at terminal PXI_Trig0.

 addtrigger

15-13

d = daq("ni");
addinput(d,"PXI1Slot5",0,"Voltage")
addtrigger(d,"Digital","StartTrigger","External","PXI1Slot5/PXI_Trig0")

Add a trigger from an external source supplied at terminal PXI1Slot5/PXI_Star.

d = daq("ni");
addinput(d,"PXI1Slot5",0,"Voltage")
addtrigger(d,"Digital","StartTrigger","External","PXI1Slot5/PXI_Star")

Input Arguments
d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.
Example: d = daq()

trigSrc — Trigger signal source
string | char

Trigger signal source, specified as a string or character vector indicating a device terminal, or
"external" when importing a terminal from an external source.
Example: "external"
Data Types: char | string

trigDest — Trigger signal destination
string | char

Trigger signal destination, specified as a string or character vector indicating a device terminal, or
"external" when exporting a trigger to an external destination.
Example: "external"
Data Types: char | string

Output Arguments
trg — Trigger
Trigger object

Trigger connection, returned as a trigger object, whose type and properties depend on the kind of
trigger. For example:

DigitalTrigger with properties:

 Source: 'External'
 Destination: 'Dev4/PFI1'
 Type: StartTrigger
 Condition: 'RisingEdge'

idx — Trigger index
numeric

15 Functions

15-14

Trigger index, returned as a numeric value. With this index, you can access the array of the
DataAcquisition DigitalTriggers property.

See Also
Functions
daq | removetrigger

Introduced in R2020a

 addtrigger

15-15

binaryVectorToDecimal
Convert binary vector value to decimal value

Syntax
decVal = binaryVectorToDecimal(binaryVector)
binaryVectorToDecimal(binaryVector,bitOrder)

Description
decVal = binaryVectorToDecimal(binaryVector) converts a binary vector to a decimal.

binaryVectorToDecimal(binaryVector,bitOrder) converts a binary vector with the specified
bit orientation to a decimal .

Examples

Convert a Binary Vector to a Decimal Value

decVal = binaryVectorToDecimal([1 1 0])

decVal =

 6

Convert a Binary Vector Array to a Decimal Value

decVal = binaryVectorToDecimal([1 0 0 0; 0 1 0 0])

decVal =

 8
 4

Convert a Binary Vector with LSB First

decVal = binaryVectorToDecimal([1 0 0 0; 0 1 0 0],'LSBFirst')

decVal =

 1
 2

Convert a Binary Vector Array with LSB First

decVal = binaryVectorToDecimal([1 1 0],'LSBFirst')

15 Functions

15-16

decVal =

 6

Input Arguments
binaryVector — Binary vector to convert to decimal
binary vectors

Binary vector to convert to a decimal, specified as a single binary vector or a row or column-based
array of binary vectors.

bitOrder — Bit order for binary vector representation
'MSBFirst' (default) | 'LSBFirst'

Bit order for the binary vector representation, specified as a character vector or string. Accepted
values are:

• 'MSBFirst' — The first element of the binary vector is the most significant bit.
• 'LSBFirst' — The first element of the binary vector is the least significant bit.

Data Types: char | string

Output Arguments
decVal — Decimal value
double

Decimal value, returned as a double.

See Also
Functions
binaryVectorToHex | decimalToBinaryVector | hexToBinaryVector

Topics
“Generate Digital Output Using Decimal Data Across Multiple Lines” on page 9-14

Introduced in R2012b

 binaryVectorToDecimal

15-17

binaryVectorToHex
Convert binary vector value to hexadecimal

Syntax
hexVal = binaryVectorToHex(binaryVector)
hexVal = binaryVectorToHex(binaryVector,bitOrder)

Description
hexVal = binaryVectorToHex(binaryVector) converts the input binary vector to a
hexadecimal.

hexVal = binaryVectorToHex(binaryVector,bitOrder) converts the input binary vector
using the specified bit orientation.

Examples

Convert a Binary Vector to a Hexadecimal

hexVal = binaryVectorToHex([0 0 1 1 1 1 0 1])

hexVal =

 '3D'

Convert an Array of Binary Vectors to Hexadecimal

hexVal = binaryVectorToHex([1 1 0 0 0 1 0 0 ; 0 0 0 0 1 0 1 0])

hexVal =

 2×1 cell array

 {'C4'}
 {'0A'}

The output is appended with 0s to make all hex values the same length character vectors.

Convert a Binary Vector with LSB First

hexVal = binaryVectorToHex([0 0 1 1 1 1 0 1],'LSBFirst')

hexVal =

 'BC'

15 Functions

15-18

Convert a Binary Vector Array with LSB First
hexVal = binaryVectorToHex([1 1 0 0 0 1 0 0 ; 0 0 0 0 1 0 1 0],'LSBFirst')

hexVal =

 2×1 cell array

 {'23'}
 {'50'}

If necessary, the output is appended with 0s to make all hex values the same length character vectors.

Note The binary vector array is converted to a cell array of hexadecimal numbers. If you input a
single binary vector, it is converted to a hexadecimal character vector.

Input Arguments
binaryVector — Binary vector to convert to hexadecimal
numeric vector of 1s and 0s

Binary vector to convert to hexadecimal, specified as a numeric vector with 0s and 1s. The vector can
be a column or row vector.

bitOrder — Bit order for binary vector representation
'MSBFirst' (default) | 'LSBFirst'

Bit order for the binary vector representation, specified as a character vector or string. Accepted
values are:

• 'MSBFirst' — The first element of the binary vector is the most significant bit.
• 'LSBFirst' — The first element of the binary vector is the least significant bit.

Data Types: char | string

Output Arguments
hexVal — Hexadecimal value
character vector

Hexadecimal value returned as a character vector. Multiple values are returned as a cell array of
character vectors.

See Also
Functions
binaryVectorToDecimal | decimalToBinaryVector | hexToBinaryVector

Topics
“Acquire Digital Data in Hexadecimal Values” on page 9-12

Introduced in R2012b

 binaryVectorToHex

15-19

daq
Package: daq.interfaces

Create DataAcquisition device interface for specific vendor

Syntax
d = daq(vendor)

Description
d = daq(vendor) creates a DataAcquisition interface object for configuring and operating data
acquisition devices from the specified vendor.

Examples

Create a DataAcquisition

Create a DataAcquisition object for interfacing with Windows sound devices.

d = daq("directsound")

d =

DataAcquisition using DirectSound hardware:

 Running: 0
 Rate: 44100
 NumScansAvailable: 0
 NumScansQueued: 0
 NumScansOutputByHardware: 0
 RateLimit: []

Show channels
Show properties and methods

Input Arguments
vendor — Device vendor
"ni" | "adi" | "mcc" | "directsound" | "digilent"

Device vendor specified as a string or character vector.
Example: "ni"
Data Types: char | string

15 Functions

15-20

Output Arguments
d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, returned as a DataAcquisition object. This interface can accommodate
all supported devices from the specified vendor. Interfaces with different vendors require separate
DataAcquisition objects.

See Also
Functions
addbidirectional | addclock | addinput | addoutput | addtrigger | daqlist |
daqvendorlist | removechannel | removeclock | removetrigger

Objects
DataAcquisition

Introduced in R2020a

 daq

15-21

daqhelp
Help for toolbox interface

Syntax
daqhelp
daqhelp(functionname)
helptext = daqhelp('functionname')

Description
daqhelp displays a comprehensive listing of Data Acquisition Toolbox functions along with a brief
description of each. Links in the output provide access to more detailed information.

daqhelp(functionname) returns help for the function specified as a character vector or string.

helptext = daqhelp('functionname') assigns the help text output to the variable out.

Examples

Get Toolbox Help

Get overview help for Data Acquisition Toolbox.

daqhelp

Get Function Help

Get help for a specified function.

daqhelp("addinput")

Return Function Help Text to Variable

Get help for a specified function, assigning the help text to a variable.

helptext = daqhelp("addinput");

Input Arguments
functionname — Function for which you want help
char vector or string

Function for which you want help, specified as a character vector or string.
Example: "addinput"

15 Functions

15-22

Data Types: char | string

Output Arguments
helptext — Help text
char vector

Help text, returned as a character vector.

Introduced before R2006a

 daqhelp

15-23

daqlist
List data acquisition devices available to toolbox

Syntax
daqlist
daqlist(vendor)
dev = daqlist(___)

Description
daqlist displays a table of all available devices for all supported vendors. The information for each
device includes device IDs, descriptions, models, and device subsystems.

daqlist(vendor) lists all available devices for the specified vendor in table format.

dev = daqlist(___) assigns the device table to dev. You can access individual table cells by
indexing position or column labels.

Examples

List Devices for All Vendors

List all available devices.

dev = daqlist

dev =

 12×5 table

 VendorID DeviceID Description Model DeviceInfo
 _____________ ___________ __ __ ____________________

 "ni" "Dev2" "National Instruments(TM) PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]
 "ni" "PXI1Slot2" "National Instruments(TM) PXI-4461" "PXI-4461" [1×1 daq.DeviceInfo]
 "adi" "SMU1" "Analog Devices Inc. ADALM1000" "ADALM1000" [1×1 daq.DeviceInfo]
 "directsound" "Audio0" "DirectSound Primary Sound Capture Driver" "Primary Sound Capture Driver" [1×1 daq.DeviceInfo]
 "directsound" "Audio1" "DirectSound Headset Microphone (Plantronics BT600)" "Headset Microphone (Plantronics BT600)" [1×1 daq.DeviceInfo]
 "directsound" "Audio2" "DirectSound Primary Sound Driver" "Primary Sound Driver" [1×1 daq.DeviceInfo]
 "directsound" "Audio3" "DirectSound Headset Earphone (Plantronics BT600)" "Headset Earphone (Plantronics BT600)" [1×1 daq.DeviceInfo]
 "directsound" "Audio4" "DirectSound LEN T2454pA (NVIDIA High Definition Audio):1" "LEN T2454pA (NVIDIA High Definition Audio):1" [1×1 daq.DeviceInfo]
 "directsound" "Audio5" "DirectSound LEN T2454pA (NVIDIA High Definition Audio):2" "LEN T2454pA (NVIDIA High Definition Audio):2" [1×1 daq.DeviceInfo]
 "directsound" "Audio6" "DirectSound Speakers (Lenovo USB Soundbar)" "Speakers (Lenovo USB Soundbar)" [1×1 daq.DeviceInfo]
 "directsound" "Audio7" "DirectSound Speakers (Realtek High Definition Audio)" "Speakers (Realtek High Definition Audio)" [1×1 daq.DeviceInfo]
 "mcc" "Board0" "Measurement Computing Corp. USB-1208FS-Plus" "USB-1208FS-Plus" [1×1 daq.DeviceInfo]

List Devices for Specific Vendor

List all available National Instruments devices.

dev = daqlist("ni")

dev =

15 Functions

15-24

 12×5 table

 VendorID DeviceID Description Model DeviceInfo
 ____________ ___________ ____________________________________ ___________ ____________________

 "ni" "Dev2" "National Instruments(TM) PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]
 "ni" "PXI1Slot2" "National Instruments(TM) PXI-4461" "PXI-4461" [1×1 daq.DeviceInfo]

View details of the first device.

devinfo = dev.DeviceInfo(1)

devinfo =

ni: National Instruments(TM) PCIe-6363 (Device ID: 'Dev2')
 Analog input supports:
 7 ranges supported
 Rates from 0.1 to 2000000.0 scans/sec
 32 channels ('ai0' - 'ai31')
 'Voltage' measurement type

 Analog output supports:
 -5.0 to +5.0 Volts,-10 to +10 Volts ranges
 Rates from 0.1 to 2857142.9 scans/sec
 4 channels ('ao0','ao1','ao2','ao3')
 'Voltage' measurement type

 Digital IO supports:
 Rates from 0.1 to 10000000.0 scans/sec
 48 channels ('port0/line0' - 'port2/line7')
 'InputOnly','OutputOnly','Bidirectional' measurement types

 Counter input supports:
 Rates from 0.1 to 100000000.0 scans/sec
 4 channels ('ctr0','ctr1','ctr2','ctr3')
 'EdgeCount','PulseWidth','Frequency','Position' measurement types

 Counter output supports:
 Rates from 0.1 to 100000000.0 scans/sec
 4 channels ('ctr0','ctr1','ctr2','ctr3')
 'PulseGeneration' measurement type

Input Arguments
vendor — Device vendor
"ni" | "adi" | "mcc" | "directsound" | "digilent"

Device vendor specified as a string or character vector.
Example: "ni"
Data Types: char | string

Output Arguments
dev — Table of devices
table

List of available devices, returned as a table.

See Also
Functions
daq | daqvendorlist

 daqlist

15-25

Introduced in R2020a

15 Functions

15-26

daqreset
Reset Data Acquisition Toolbox

Syntax
daqreset

Description
daqreset resets Data Acquisition Toolbox and deletes all data acquisition objects.

Examples

Reset the Toolbox

Create a DataAcquisition interface, then reset the toolbox.

d = daq("ni");
daqreset
d

d =

 handle to deleted DataAcquisition

See Also
Functions

Introduced before R2006a

 daqreset

15-27

daqvendorlist
List vendors available to toolbox

Syntax
daqvendorlist
v = daqvendorlist

Description
daqvendorlist displays a list of supported vendors with information about adaptor versions, driver
versions, and operational status. Vendor support requires installation of the appropriate support
package. See “Data Acquisition Toolbox Supported Hardware”.

v = daqvendorlist assigns the table to v.

Examples

List Available Vendors

List vendors available to toolbox.

daqvendorlist

ans =

 5×5 table

 ID FullName AdaptorVersion DriverVersion Operational
 _____________ __________________________ ______________ _____________ ___________

 "ni" "National Instruments(TM)" "4.0 (R2019b)" "unknown" false
 "adi" "Analog Devices Inc." "4.0 (R2019b)" "1.0" true
 "directsound" "DirectSound" "4.0 (R2019b)" "n/a" true
 "digilent" "Digilent Inc." "4.0 (R2019b)" "3.7.20" true
 "mcc" "Uninitialized" "4.0 (R2019b)" "unknown" false

Output Arguments
v — Vendor information
table

Vendor information returned as a table.

See Also
Functions
daq | daqlist

Introduced in R2020a

15 Functions

15-28

DataAcquisition
Interface to data acquisition device

Description
The DataAcquisition object provides access to the devices of a specified vendor.

Creation
Use the daq function to create a DataAcquisition object.

Properties
AutoSyncDSA — Automatically Synchronize DSA devices
false (default) | true

Automatically Synchronize DSA devices, specified as a logical true or false. Use this property to
enable or disable automatic synchronization between DSA (PXI or PCI) devices in the same
DataAcquisition. By default automatic synchronization capability is disabled.
Example: true
Data Types: logical

Channels — Device channels
array of channel objects

This property is read-only.

Device channels, returned as an array of channel objects. Create channels with the functions
addinput, addoutput, and addbidirectional.
Example: addinput(d,…)

Clocks — Device clock connections
array of clock objects

This property is read-only.

Device clock connections, returned as an array of clock objects. Create clocks with the addclock
function.
Example: addclock(d,…)

DigitalTriggers — Device digital trigger connections
array of DigitalTrigger objects

This property is read-only.

Device digital trigger connections, returned as an array of DigitalTrigger objects. Use the
addtigger function to add digital triggers to the DataAcquisition.

 DataAcquisition

15-29

Example: addtrigger(d,…)

DigitalTriggerTimeout — Time allowed for occurrence of digital trigger
10 (default) | numeric | duration

Time allowed for occurrence of digital trigger, specified as a numeric value in seconds or a duration.
Example: 30
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
duration

ErrorOccurredFcn — Callback function to call when error occurs
function handle

Callback function to call when error occurs, specified as a function handle.
Example: @mycleanup
Data Types: function_handle

NumDigitalTriggerRemaining — Number of digital triggers remaining in run
1 (default) | numeric

This property is read-only.

Number of digital triggers remaining in run, returned as a double.
Example: 1
Data Types: double

NumDigitalTriggersPerRun — Number of digital triggers per DataAcquisition run
numeric

Number of digital triggers per DataAcquisition run, returned as a double.
Example: 2
Data Types: double

NumScansAvailable — Number of data scans acquired and available for reading
numeric

This property is read-only.

Number of data scans available for reading, returned as a double. These scans have been acquired by
the device input channels.
Example: 1000
Data Types: uint64

NumScansOutputByHardware — Number of scans generated as device output
numeric

This property is read-only.

Number of scans generated as device output, returned as a double.

15 Functions

15-30

Example: 1024
Data Types: uint64

NumScansQueued — Number of scans prepared for device output
numeric

This property is read-only.

Number of scans queued to the output channels
Example: 4000
Data Types: uint64

Rate — Data scan rate
numeric

Data scan rate, specified as a numeric value of samples per second.
Example: 44100
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

RateLimit — Lower and upper scan rate limits
array of doubles

This property is read-only.

Lower and upper scan rate limits, returned as a 1-by-2 vector of doubles indicating minimum and
maximum allowed scan rates in samples per second. The scan rate limits depend on the hardware
and its configurations. In devices that multiplex channels to a converter, the rate limit is impacted by
the number of channels you use. For more information, see “Sampling” on page 1-13.
Example: [8000 192000]
Data Types: double

Running — DataAcquisition running indication
true | false

This property is read-only.

DataAcquisition running indication, returned as true or false.
Example: true
Data Types: logical

ScansAvailableFcn — Callback function when scans are available
function handle

Callback function to execute when scans are available from the input channels, specified as a function
handle
Example: @read
Data Types: function_handle

ScansAvailableFcnCount — Number of acquired scans to trigger ScansAvailableFcn
numeric

 DataAcquisition

15-31

Number of acquired scans to trigger ScansAvailableFcn, specified as a numeric value. The
function handle specified in ScansAvailableFcn executes every time ScansAvailableFcnCount
scans are acquired from the input channels.
Example: 8000
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ScansRequiredFcn — Callback function when output scan data is required
function handle

Callback function to execute when scan data is required for device output channels. specified as a
function handle.
Example: @write
Data Types: function_handle

ScansRequiredFcnCount — Number of scans to trigger ScansRequiredFcn
"auto" (default) | numeric

Number of queued scans to trigger ScansRequiredFcn, specified as a numeric value or "auto".
The function handle specified in ScansRequiredFcn executes when NumScansQueued drops below
the value specified in this property. If this is set to "auto", the value resets to a default.
Example: 2000
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

UserData — Custom data
any data

Custom data, specified as any MATLAB data type and format.
Example: datetime('now')
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi

Vendor — Data acquisition hardware vendor information
vendor object

This property is read-only.

Data acquisition hardware vendor information, returned as a vendor object with the following
properties:

ID
FullName
AdaptorVersion
DriverVersion
IsOperational

This object is the same as the corresponding vendor object returned by the daqvendorlist
function.

15 Functions

15-32

WaitingForDigitalTrigger — Digital trigger waiting indication
false (default) | true

This property is read-only.

Digital trigger waiting indication, returned as a logical.
Example: true
Data Types: logical

Object Functions
addinput Add input channel to device interface
read Read data acquired by hardware
readwrite Simultaneously read and write device channel data
start Start DataAcquisition background operation
stop Stop background operation
removechannel Remove channel from device interface
flush Flush DataAcquisition input and output buffers
write Write output scans to hardware channels
preload Queue scan data for device output
addoutput Add output channel to device interface
addbidirectional Add digital bidirectional channel to device interface
resetcounters Reset hardware scan count for all counter inputs
addclock Add clock connection to device interface
removeclock Remove clock from device interface
addtrigger Add trigger connection to device interface
removetrigger Remove trigger from device interface

Examples

Create a DataAcquisition

Create and configure a DataAcquisition object for interfacing with National Instruments devices.

d = daq("ni")
d.Rate = 20000;

See Also
Functions
daq | daqhelp | daqlist | daqreset | daqvendorlist

Introduced in R2020a

 DataAcquisition

15-33

decimalToBinaryVector
Convert decimal value to binary vector

Syntax
binVal = decimalToBinaryVector(decimalNumber)
binVal = decimalToBinaryVector(decimalNumber,numberOfBits)
binVal = decimalToBinaryVector(decimalNumber,numberOfBits,bitOrder)
binVal = decimalToBinaryVector(decimalNumber,[],bitOrder)

Description
binVal = decimalToBinaryVector(decimalNumber) converts a positive decimal number to a
binary vector, represented using the minimum number of bits.

binVal = decimalToBinaryVector(decimalNumber,numberOfBits) converts a decimal
number to a binary vector with the specified number of bits.

binVal = decimalToBinaryVector(decimalNumber,numberOfBits,bitOrder) converts a
decimal number to a binary vector with the specified number of bits in the specified bit ordering.

binVal = decimalToBinaryVector(decimalNumber,[],bitOrder) converts a decimal
number to a binary vector with default number of bits in the specified bit ordering.

Examples

Convert a Decimal to a Binary Vector

binVal = decimalToBinaryVector(6)

binVal =

 1 1 0

Convert an Array of Decimals to a Binary Vector Array

binVal = decimalToBinaryVector(0:4)

binVal =

 0 0 0
 0 0 1
 0 1 0
 0 1 1
 1 0 0

15 Functions

15-34

Convert a Decimal into a Binary Vector of Specific Bits

binVal = decimalToBinaryVector(6,8,'MSBFirst')

binVal =

 0 0 0 0 0 1 1 0

Convert a Decimal into a Binary Vector with LSB First

binVal = decimalToBinaryVector(6,[],'LSBFirst')

binVal =

 0 1 1

Convert an Array of Decimals into a Binary Vector Array with LSB First

binVal = decimalToBinaryVector(0:4, 4,'LSBFirst')

binVal =

 0 0 0 0
 1 0 0 0
 0 1 0 0
 1 1 0 0
 0 0 1 0

Input Arguments
decimalNumber — Number to convert to binary vector
numeric

The number to convert to a binary vector specified as a positive integer scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

numberOfBits — Number of bits required to correctly represent the decimal number
numeric

The number of bits required to correctly represent the decimal. This is an optional argument. If you
do not specify the number of bits, the number is represented using the minimum number of bits
needed. By default minimum number of bits needed to represent the value is specified, unless you
specify a value

bitOrder — Bit order for binary vector representation
'MSBFirst' (default) | 'LSBFirst'

Bit order for the binary vector representation, specified as a character vector or string. Accepted
values are:

• 'MSBFirst' — The first element of the binary vector is the most significant bit.

 decimalToBinaryVector

15-35

• 'LSBFirst' — The first element of the binary vector is the least significant bit.

Data Types: char | string

Output Arguments
binVal — Binary value
array of 1s and 0s

Binary value, returned as a double array of 1s and 0s.

See Also
Functions
binaryVectorToDecimal | binaryVectorToHex | hexToBinaryVector

Topics
“Generate Digital Output Using Decimal Data Across Multiple Lines” on page 9-14

Introduced in R2012b

15 Functions

15-36

disableVendorDiagnostics
Suppress vendor diagnostic display in device listing

Syntax
disableVendorDiagnostics

Description
disableVendorDiagnostics turns off the display of diagnostic information in the daqlist
function output related to non-operational vendors. The display is enabled by default.

Examples

Toggle Diagnostic Display

Control the display of diagnostic information in the device listing.

Allow diagnostic information to display in the device listing. The installation does not include drivers
for 'ni' or 'mcc'.

enableVendorDiagnostics
daqlist

Unable to detect 'ni' hardware:
National Instruments NI-DAQmx driver is either not installed or the installed version is not supported.
Use the Windows Control Panel to uninstall any existing NI-DAQmx driver listed under 'National Instruments Software'.
Then, open the Add-On Explorer to install the Data Acquisition Toolbox Support Package for
National Instruments NI-DAQmx Devices.

Unable to detect 'mcc' hardware:
Driver command failed with status code: -30.

ans =

 1×5 table

 VendorID DeviceID Description
 _____________ ________ __

 "directsound" "Audio0" "DirectSound Primary Sound Capture Driver"

Suppress diagnostic information in the device listing. The installation is the same.

disableVendorDiagnostics
daqlist

ans =

 1×5 table

 VendorID DeviceID Description
 _____________ ________ __

 disableVendorDiagnostics

15-37

 "directsound" "Audio0" "DirectSound Primary Sound Capture Driver"

See Also
Functions
daqlist | daqvendorlist | enableVendorDiagnostics

Introduced in R2020a

15 Functions

15-38

enableVendorDiagnostics
Allow diagnostic display in vendor listing

Syntax
enableVendorDiagnostics

Description
enableVendorDiagnostics turns on the display of diagnostic information in the daqlist function
output related to non-operational vendors. The display is enabled by default.

Examples

Toggle Diagnostic Display

Control the display of diagnostic information in the device listing.

Allow diagnostic information to display in the device listing. The installation does not include drivers
for 'ni' or 'mcc'.

enableVendorDiagnostics
daqlist

Unable to detect 'ni' hardware:
National Instruments NI-DAQmx driver is either not installed or the installed version is not supported.
Use the Windows Control Panel to uninstall any existing NI-DAQmx driver listed under 'National Instruments Software'.
Then, open the Add-On Explorer to install the Data Acquisition Toolbox Support Package for
National Instruments NI-DAQmx Devices.

Unable to detect 'mcc' hardware:
Driver command failed with status code: -30.

ans =

 1×5 table

 VendorID DeviceID Description
 _____________ ________ __

 "directsound" "Audio0" "DirectSound Primary Sound Capture Driver"

Suppress diagnostic information in the device listing. The installation is the same.

disableVendorDiagnostics
daqlist

ans =

 1×5 table

 VendorID DeviceID Description
 _____________ ________ __

 enableVendorDiagnostics

15-39

 "directsound" "Audio0" "DirectSound Primary Sound Capture Driver"

See Also
Functions
daqlist | daqvendorlist | disableVendorDiagnostics

Introduced in R2020a

15 Functions

15-40

flush
Package: daq.interfaces

Flush DataAcquisition input and output buffers

Syntax
flush(d)

Description
flush(d) removes all acquired and queued scans in the input and output buffers of the
DataAcquisition interface.

Examples

Flush DataAcquisition Data

Clear all acquired and queued scans.

d = daq("ni")
% :
flush(d)

Input Arguments
d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.
Example: d = daq()

See Also
Functions
daq

Introduced in R2020a

 flush

15-41

hexToBinaryVector
Convert hexadecimal value to binary vector

Syntax
binVal = hexToBinaryVector(hexNumber)
binVal = hexToBinaryVector(hexNumber,numberOfBits)
binVal = hexToBinaryVector(hexNumber,numberOfBits,bitOrder)

Description
binVal = hexToBinaryVector(hexNumber) converts hexadecimal numbers to a binary vector.

binVal = hexToBinaryVector(hexNumber,numberOfBits) converts hexadecimal numbers to a
binary vector with the specified number of bits.

binVal = hexToBinaryVector(hexNumber,numberOfBits,bitOrder) converts hexadecimal
numbers to a binary vector with the specified number of bits in the specified bit ordering.

Examples

Convert a hexadecimal to a binary vector

binVal = hexToBinaryVector('A1')

binVal =

 1×8 logical array

 1 0 1 0 0 0 0 1

Convert a hexadecimal with a leading 0 to a binary Vector

binVal = hexToBinaryVector('0xA')

binVal =

 1×4 logical array

 1 0 1 0

Convert an Array of Hexadecimal Numbers to a Binary Vector

binVal = hexToBinaryVector(['A1';'B1'])

binVal =

15 Functions

15-42

 2×8 logical array

 1 0 1 0 0 0 0 1
 1 0 1 1 0 0 0 1

Convert a Hexadecimal Number into a Binary Vector of Specific Bits

binVal = hexToBinaryVector('A1',12,'MSBFirst')

binVal =

 1×12 logical array

 0 0 0 0 1 0 1 0 0 0 0 1

Convert a Cell Array of Hexadecimal Numbers into a Binary Vector of Specific Bits

binVal = hexToBinaryVector({'A1';'B1'},8)

binVal =

 2×8 logical array

 1 0 1 0 0 0 0 1
 1 0 1 1 0 0 0 1

Convert a Hexadecimal into a Binary Vector with LSB First

binVal = hexToBinaryVector('A1', [], 'LSBFirst')

binVal =

 1×8 logical array

 1 0 0 0 0 1 0 1

Input Arguments
hexNumber — Hexadecimal to convert to binary vector
hexadecimal value

Hexadecimal number to convert to a binary vector, specified as a character vector or string.
Data Types: char | string

numberOfBits — Number of bits to represent the decimal number
numeric

Number of bits to represent the decimal number, specified as a numeric value. This is an optional
argument. If you do not specify the number of bits, the number is represented using the minimum
number of bits needed.

 hexToBinaryVector

15-43

bitOrder — Bit order for binary vector representation
'MSBFirst' (default) | 'LSBFirst'

Bit order for the binary vector representation, specified as a character vector or string. Accepted
values are:

• 'MSBFirst' — The first element of the binary vector is the most significant bit.
• 'LSBFirst' — The first element of the binary vector is the least significant bit.

Data Types: char | string

Output Arguments
binVal — Binary value
array of 1s and 0s

Binary value, returned as a logical array of 1s and 0s.

See Also
Functions
binaryVectorToDecimal | binaryVectorToHex | decimalToBinaryVector

Topics
“Acquire Digital Data in Hexadecimal Values” on page 9-12

Introduced in R2012b

15 Functions

15-44

preload
Package: daq.interfaces

Queue scan data for device output

Syntax
preload(d,scanData)

Description
preload(d,scanData) provides scan data to the DataAcquisition interface d for device output.

You queue data before calling start on your DataAcquisition. Calling start runs the
DataAcquisition in the background, without blocking MATLAB.

Examples

Queue Scan Data for Device Output

Queue scan data to the DataAcquisition interface in preparation for device output.

Define and queue a sine wave for output of one cycle on a single channel.

scanData = sin(linspace(0,2*pi,5000)');
preload(d,scanData)
% ⋮
start(d)

Define and queue a sine wave for repeated output on a single channel.

scanData = sin(linspace(0,2*pi,5000)');
preload(d,scanData)
% ⋮
start(d,"RepeatOutput")
% ⋮
stop(d)

Input Arguments
d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.
Example: d = daq(...)

scanData — Scan data for device output
double matrix

 preload

15-45

Scan data for device output, specified as an M-by-N matrix, where M is the number of data scans and
N is the number of output channels in the DataAcquisition interface. For a single channel, the data is
a column vector.
Data Types: double

See Also
Functions
daq | flush | start

Introduced in R2020a

15 Functions

15-46

read
Package: daq.interfaces

Read data acquired by hardware

Syntax
scanData = read(d)
scanData = read(d,span)
[scanData,triggerTime] = read(___)
scanData = read(___ ,"OutputFormat","Matrix")
[scanData,timeStamp,triggerTime] = read(___ ,"OutputFormat","Matrix")

Description
scanData = read(d) reads a single input scan from all input channels on the DataAcquisition, and
returns a timetable to scanData.

scanData = read(d,span) reads a span of input scans from the DataAcquisition interface, and
returns a timetable to scanData. You can specify span as a duration, a number of scans, or "all".

• If the DataAcquisition is not running and has no acquired data, the DataAcquisition starts a
foreground finite acquisition to read the requested number of scans. MATLAB is blocked until the
acquisition and read are complete.

• If the DataAcquisition is running when you call this function, it reads data already acquired, if
necessary waiting until the specified number of scans are available. MATLAB is blocked until the
acquisition and read are complete. This is typical when start is called to run a background
acquisition prior to calling read.

• If the DataAcquisition is not running but has acquired data from a previous run, it reads the
specified number of scans or all the data, whichever is less.

[scanData,triggerTime] = read(___) performs the specified read, and returns a timetable to
scanData and scan trigger time to triggerTime as a datetime.

scanData = read(___ ,"OutputFormat","Matrix") performs the specified read, and returns
an M-by-N matrix of doubles to scanData, where M is the number of scans and N is the number of
input channels. Each column contains the data from one channel.

[scanData,timeStamp,triggerTime] = read(___ ,"OutputFormat","Matrix") performs
the specified read and returns the scan timestamps to timeStamp, as an M-by-1 vector of doubles
representing the relative time in seconds after the first scan. The rows of the timeStamp vector
correspond to the rows of the scanData matrix. The scan trigger time is returned to triggerTime
as a datenum double.

Examples

 read

15-47

Read a Single Scan

Without specifying a duration or number of scans, the read function acquires a single on-demand
scan on all channels.

d = daq("ni")
addinput(d,"Dev1",1,"Voltage"); % add more channels as needed
scanData = read(d)

data =

 timetable

 Time Dev1_ai1
 _____ ________

 0 sec -1.9525

Initiate a Foreground Acquisition

If there is no data available to be read from the device, the read function initiates a foreground
acquisition, blocking MATLAB until complete.

d = daq("ni");
ch = addinput(d,"Dev1",1:2,"Voltage")

ch =

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ______ _______ ________________ __________________ __________

 1 "ai" "Dev1" "ai1" "Voltage (Diff)" "-10 to +10 Volts" "Dev1_ai1"
 2 "ai" "Dev1" "ai2" "Voltage (Diff)" "-10 to +10 Volts" "Dev1_ai2"

Read five scans of data on all channels.

scanData = read(d,5)

scanData =

 5×2 timetable

 Time Dev1_ai1 Dev1_ai2
 _________ ________ ________

 0 sec 0.1621 0.62579
 0.001 sec 0.42124 0.56955
 0.002 sec 0.51069 0.56002
 0.003 sec 0.54193 0.56166
 0.004 sec 0.55377 0.56396

Read 5 milliseconds of data on all channels.

d.Rate = 1000;
scanData = read(d,seconds(0.005))

scanData =

 5×2 timetable

15 Functions

15-48

 Time Dev1_ai1 Dev1_ai2
 _________ ________ ________

 0 sec 0.2259 0.33278
 0.001 sec 0.28871 0.31699
 0.002 sec 0.3068 0.31633
 0.003 sec 0.3137 0.31929
 0.004 sec 0.31732 0.32028

You can also read the data into arrays of double values. Five scans on two channels results in a 5-by-2
matrix, with a column for each channel.

scanData = read(d,5,"OutputFormat","Matrix")

scanData =

 0.0424 0.0644
 0.0572 0.0621
 0.0605 0.0638
 0.0618 0.0641
 0.0631 0.0648

Read Data from a Background Acquisition

When a background acquisition is initiated with the start function, use read to import the data.

d = daq("ni");
ch = addinput(d,"Dev1",1:2,"Voltage")
start(d,"NumScans",5)

Background operation has started.
Background operation will stop after 0.005 s.
To read acquired scans, use read.

scanData = read(d,"all")

scanData =

 5×2 timetable

 Time Dev1_ai1 Dev1_ai2
 _________ ________ ________

 0 sec 0.012466 0.023977
 0.001 sec 0.019373 0.023319
 0.002 sec 0.021017 0.02299
 0.003 sec 0.021346 0.02299
 0.004 sec 0.022661 0.023648

Input Arguments
d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.

 read

15-49

Example: d = daq()

span — Length of read operation
duration | double

Length of read operation, specified as a duration or double. If this is a duration type, it specifies the
time duration of acquisition; if a double, it specifies the number of scans.
Example: seconds(5)
Data Types: double | duration

Output Arguments
scanData — Input scan data from the device
timetable | double

Input scan data from the device, returned as a timetable or matrix of doubles, depending on the
OutputFormat setting.

You can access the scan trigger time in the timetable property
scanData.Properties.CustomProperties.TriggerTime, returned as a datetime.

triggerTime — Time that acquisition began
datetime | datenum double

Time that acquisition began, returned as a datetime if OutputFormat is 'Timetable' (default), or
as a double if OutputFormat is 'Matrix'. This information is also available as a datetime value in
the timetable property scanData.Properties.CustomProperties.TriggerTime.

timeStamp — Times of scan acquisitions
double

Times of scan acquisitions, returned as a matrix of doubles. Each value represents relative time in
seconds after the first scan. This argument is returned only when OutputFormat is specified as
"Matrix".

See Also
Functions
start

Introduced in R2020a

15 Functions

15-50

readwrite
Package: daq.interfaces

Simultaneously read and write device channel data

Syntax
inScanData = readwrite(d,outScanData)
[inScanData,triggerTime] = readwrite(d,outScanData)
inScanData = readwrite(d,outScanData,"OutputFormat","Matrix")
[inScanData,timeStamp,triggerTime] = readwrite(___ ,"OutputFormat","Matrix")

Description
inScanData = readwrite(d,outScanData) writes outScanData to the DataAcquisition
interface output channels, and reads inScanData from the DataAcquisition interface input channels.
Input and output have the same number of scans, determined by the number of rows in the matrix
outScanData. By default, data is returned to inScanData as a timetable. readwrite supports only
foreground clocked operations, blocking MATLAB until complete.

[inScanData,triggerTime] = readwrite(d,outScanData) performs the read and write
operations, and also returns the scan trigger time to triggerTime as a datetime.

inScanData = readwrite(d,outScanData,"OutputFormat","Matrix") performs the read
and write operations, returning a matrix of double values to inScanData.

[inScanData,timeStamp,triggerTime] = readwrite(___ ,"OutputFormat","Matrix")
performs the read and write operations, also returning the scan times as a column vector of doubles
to timeStamps, and the scan trigger time to triggerTime as a datenum double. The rows of the
timeStamp vector correspond to the rows of the inScanData matrix.

Examples

Measure and Generate Simultaneously

Configure the DataAcquisition to measure and generate voltage simultaneously, in the foreground.
d = daq("ni");
addinput(d, "Dev1","ai0","Voltage");
addoutput(d, "Dev1","ao0","Voltage");
outScanData = linspace(0,1,d.Rate)'; % Increase output voltage with each scan.
inScanData = readwrite(d,outScanData);

Input Arguments
d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.
Example: d = daq()

 readwrite

15-51

outScanData — Scan data for device output
double matrix

Scan data for device output, specified as an M-by-N matrix, where M is the number of data scans and
N is the number of output channels in the DataAcquisition interface. For a single channel, the data is
a column vector. Single scans are not supported by this function, so M must be greater than 1.
Data Types: double

Output Arguments
inScanData — Input scan data from the device
timetable | double

Input scan data from the device, returned as a timetable or matrix of doubles, depending on the
OutputFormat setting.

You can access the scan trigger time in the timetable property
inScanData.Properties.CustomProperties.TriggerTime, returned as a datetime.

triggerTime — Time that acquisition began
datetime | datenum double

Time that acquisition began, returned as a datetime if OutputFormat is "Timetable" (default), or
as a double if OutputFormat is "Matrix". This information is also available as a datetime value in
the timetable property inScanData.Properties.CustomProperties.TriggerTime.

timeStamp — Times of scan acquisitions
double

Times of scan acquisitions, returned as a matrix of doubles. Each value represents relative time in
seconds after the first scan. This argument is returned only when OutputFormat is specified as
"Matrix".

See Also
Functions
daq

Introduced in R2020a

15 Functions

15-52

removechannel
Package: daq.interfaces

Remove channel from device interface

Syntax
removechannel(d,idx)

Description
removechannel(d,idx) removes the specified channels from the DataAcquisition interface. If the
DataAcquisition has channels with indices higher than the channels being removed, they are
renumbered to fill the empty gaps left by the removal, but the channel names do not change.

Examples

Remove Channels from DataAcquisition Interface

Remove channels from a DataAcquisition and note the index changes.

d = daq("directsound");
addinput(d,"Audio0","1","Audio");
addinput(d,"Audio1","1","Audio");
addoutput(d,"Audio3","1","Audio");
addoutput(d,"Audio6","1","Audio");
d.Channels

index Type Device Channel Measurement Type Range Name
_____ ______ ________ _______ ________________ _______________ _____

 1 "audi" "Audio1" "1" "Audio" "-1.0 to +1.0 " "ch1"
 2 "audi" "Audio0" "1" "Audio" "-1.0 to +1.0 " "ch2"
 3 "audo" "Audio3" "1" "Audio" "-1.0 to +1.0 " "ch3"
 4 "audo" "Audio6" "1" "Audio" "-1.0 to +1.0 " "ch4"

removechannel(d,2)
d.Channels

index Type Device Channel Measurement Type Range Name
_____ ______ ________ _______ ________________ _______________ _____

 1 "audi" "Audio1" "1" "Audio" "-1.0 to +1.0 " "ch1"
 2 "audo" "Audio3" "1" "Audio" "-1.0 to +1.0 " "ch3"
 3 "audo" "Audio6" "1" "Audio" "-1.0 to +1.0 " "ch4"

Note that after removal of the second channel, the remaining channels are numbered 1, 2, and 3. The
channel names are not changed.

Remove all remaining channels.

 removechannel

15-53

removechannel(d,[1:length(d.Channels)])

Input Arguments
d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.
Example: d = daq()

idx — Channel index
numeric scalar | numeric vector

Channel index, specified as a numeric scalar or vector. Removing a channel shifts down the indices of
remaining higher channels, but does not change the channel names. Do not confuse the channel
index in the DataAcquisition with the channel ID of the data acquisition device.
Example: [1,3]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

See Also
Functions
addbidirectional | addinput | addoutput | daq | daqlist

Introduced in R2020a

15 Functions

15-54

removeclock
Package: daq.interfaces

Remove clock from device interface

Syntax
removeclock(d,idx)

Description
removeclock(d,idx) removes the specified clock from the DataAcquisition interface. If the
DataAcquisition has clocks with indices higher than the clock being removed, they are renumbered to
fill the empty gaps left by the removal.

Examples

Remove Clock from DataAcquisition Interface

Remove a clock from a DataAcquisition interface.

d = daq("ni");
% :
Cidx = addclock(d,"ScanClock","Dev1/PFI0","Dev2/PFI0");
% :
removeclock(d,Cidx);

Input Arguments
d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.
Example: d = daq()

idx — Clock index
numeric scalar | numeric vector

Clock index, specified as a numeric scalar or vector. Removing a clock shifts down the indices of
remaining higher clocks.
Example: 1
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

See Also
Functions
addclock | daq

 removeclock

15-55

Introduced in R2020a

15 Functions

15-56

removetrigger
Package: daq.interfaces

Remove trigger from device interface

Syntax
removetrigger(d,idx)

Description
removetrigger(d,idx) removes the specified trigger from the DataAcquisition interface. If the
DataAcquisition has triggers with indices higher than the trigger being removed, they are
renumbered to fill the empty gaps left by the removal.

Examples

Remove Trigger from DataAcquisition Interface

Remove a trigger from a DataAcquisition interface.

d = daq("ni");
% :
Tidx = addtrogger(d,"Digital","StartTrigger","Dev1/PFI0","Dev2/PFI0");
% :
removetrigger(d,Tidx);

Input Arguments
d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.
Example: d = daq()

idx — Trigger index
numeric scalar | numeric vector

Trigger index, specified as a numeric scalar or vector. Removing a trigger shifts down the indices of
remaining higher triggers.
Example: 1
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

See Also
Functions
addtrigger | daq

 removetrigger

15-57

Introduced in R2020a

15 Functions

15-58

resetcounters
Package: daq.interfaces

Reset hardware scan count for all counter inputs

Syntax
resetcounters(d)

Description
resetcounters(d) resets hardware scan count for all counter inputs between on-demand reads on
the DataAcquisition d.

Examples

Acquire Edge Count and Reset Counter

Configure a DataAcquisition to measure an EdgeCount until the count exceeds a threshold, then reset
the counter.

d = daq("ni");
addinput(d,"Dev1","ctr0","EdgeCount");
maxCount = 100;
count = read(d);
while count <= maxCount
 count = read(d);
end
resetcounters(d);

Input Arguments
d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.
Example: d = daq()

See Also

Introduced in R2020a

 resetcounters

15-59

start
Package: daq.interfaces

Start DataAcquisition background operation

Syntax
start(d)
start(d,"Continuous")
start(d,"RepeatOutput")
start(d,"Duration",span)
start(d,"NumScans",span)

Description
start(d) starts the DataAcquisition interface background operation. When the input acquisition and
output generation begin depends on channel configuration and preloaded output data:

• If the DataAcquisition has only input channels, the acquisition begins immediately, collecting scan
data, which you can access later with the read function. The default scan duration is 1 second.

• If the DataAcquisition interface has only output channels, generation begins immediately if data is
already queued with the preload function. If no data is queued, output begins when data is made
available with write function.

• If the DataAcquisition has both input and output channels, the input acquisition begins and ends
at the same time as the output generation, resulting in the same number of scans.

start(d,"Continuous") starts the background operation running continuously. If there is data
already available from the preload function, output generation begins immediately along with
acquisition on any input channels. Otherwise, acquisition begins when you execute write. The
operation continues until you call stop. As output scan data is generated or input scan data is
acquired, you might need to call write or read while the DataAcquisition is still running.

start(d,"RepeatOutput") starts the background operation, generating periodic output in a
repeating loop of the output scan data. If there is data already available from the preload function,
output generation begins immediately along with acquisition on any input channels. Otherwise,
generation and acquisition begin when you execute write. The operation continues until you call
stop. If input scan data is being acquired, you might need to call read while the DataAcquisition is
still running.

start(d,"Duration",span) or start(d,"NumScans",span) starts the background acquisition
to run for a finite span of time, specified as either a duration or a number of scans.

Examples

Read Data from a Background Acquisition

When a background acquisition is initiated with the start function, use read to import the data.

15 Functions

15-60

d = daq("ni");
ch = addinput(d,"Dev1",1:2,"Voltage")
start(d,"NumScans",5)

Background operation has started.
Background operation will stop after 0.005 s.
To read acquired scans, use read.

scanData = read(d,"all")

scanData =

 5×2 timetable

 Time Dev1_ai1 Dev1_ai2
 _________ ________ ________

 0 sec 0.012466 0.023977
 0.001 sec 0.019373 0.023319
 0.002 sec 0.021017 0.02299
 0.003 sec 0.021346 0.02299
 0.004 sec 0.022661 0.023648

Generate a Repeating Signal in the Background

Define and preload data for device output, then start output generation to repeat in the background
while MATLAB continues.

d = daq("ni");
addoutput(d,"Dev1",1,"Voltage");
signalData = sin((1:1000)*2*pi/1000);
preload(d,signalData') % Column of data for one channel
start(d,"RepeatOutput")
% Device output now repeated while MATLAB continues.
stop(d)

Input Arguments
d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.
Example: d = daq()

span — Length of background operation
duration | double

Length of background operation, specified as a duration or double. For "Duration" specify a
duration type; for "NumScans" specify a double for the number of scans. The default is 1 second.
Example: seconds(5)
Data Types: double | duration

 start

15-61

See Also
Functions
daq | preload | read | stop | write

Introduced in R2020a

15 Functions

15-62

stop
Package: daq.interfaces

Stop background operation

Syntax
stop(d)

Description
stop(d) stops the DataAcquisition interface background operations, and flushes queued output data.
Input data acquired by the operation is not flushed.

Examples

Stop DataAcquisition Operations

Stop DataAcquisition interface operations.

d = daq("ni")
% :
start(d)
% :
stop(d)

Input Arguments
d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.
Example: d = daq()

See Also
Functions
daq | start

Introduced in R2020a

 stop

15-63

write
Package: daq.interfaces

Write output scans to hardware channels

Syntax
write(d,scanData)

Description
write(d,scanData) writes scan data to the DataAcquisition interface for the device output. The
DataAcquisition might already be started or not.

• If the DataAcquisition has not been started, write sends the data and starts device output
generation. As a finite foreground generation, this blocks MATLAB until completed.

• If the DataAcquisition had already been started, write provides the data for the output operation
to begin, which then runs in the background without blocking MATLAB. The start function
arguments determine if the generation is finite, repeating, or continuous. Continuous output
requires write to provide data for as long as output is needed; multiple calls to write might be
necessary.

Examples

Write a Single Scan

If the supplied data value specifies only a single scan of data for all output channels, the write
function generates an on-demand output without clocking.

Create interface and add two output channels.

d = daq("ni");
ch = addoutput(d,"Dev1",0:1,"Voltage");

ch =

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ______ _______ _____________________ __________________ __________

 1 "ao" "Dev1" "ao0" "Voltage (SingleEnd)" "-10 to +10 Volts" "Dev1_ao0"
 2 "ao" "Dev1" "ao1" "Voltage (SingleEnd)" "-10 to +10 Volts" "Dev1_ao1"

Output 5 volts on both channels.

write(d,[5 5])

Generate a Repeating Signal in the Background

Start a DataAcquisition interface for background operation, then provide data for device output.

15 Functions

15-64

d = daq("ni");
addoutput(d,"Dev1",1,"Voltage");
signalData = sin((1:1000)*2*pi/1000);
start(d,"RepeatOutput")
% ⋮
write(d,signalData')
% Device output now repeated while MATLAB continues.
pause(5)
stop(d)

Input Arguments
d — DataAcquisition interface
DataAcquisition object

DataAcquisition interface, specified as a DataAcquisition object, created using the daq function.
Example: d = daq()

scanData — Scan data for device output
double matrix

Scan data for device output, specified as an M-by-N matrix, where M is the number of data scans and
N is the number of output channels in the DataAcquisition interface. Each column of scanData
contains the data for one channel. For a single channel, the data is a column vector.
Data Types: double

See Also
Functions
read | start

Introduced in R2020a

 write

15-65

Apps

16

Analog Input Recorder
Acquire and visualize analog input signals

Description
The Analog Input Recorder provides a graphical interface to data acquisition devices.

Using this app, you can:

• Configure device channels and acquisition properties.
• Preview signals on several analog input channels for a selected device.
• Record analog input data for a finite period (foreground) or continuously (background).
• Create scripts in the Live Editor from the app configuration.
• Open the Signal Analyzer app of Signal Processing Toolbox™ to perform analysis on your recorded

data.

16 Apps

16-2

Open the Analog Input Recorder App
• MATLAB Toolstrip: On the Apps tab, under Test and Measurement, click the app.
• MATLAB command prompt: Enter analogInputRecorder.

Note Opening the Analog Input Recorder deletes all your existing DataAcquisition interfaces in
MATLAB.

The DataAcquisition interface created by the Analog Input Recorder is not accessible from the
MATLAB command line.

Limitations
The Analog Input Recorder currently supports only analog voltage input and audio input recording.

This app supports devices only from the following vendors:

• National Instruments ("ni")
• Windows Sound Cards ("directsound")
• Analog Devices ("adi")
• Measurement Computing ("mcc")

The app device list includes only those devices with supported subsystems.

See Also
Apps
Analog Output Generator

Topics
“Acquire Data with the Analog Input Recorder” on page 6-17

Introduced in R2017b

 Analog Input Recorder

16-3

Analog Output Generator
Define and generate analog output signals

Description
The Analog Output Generator provides a graphical interface to data acquisition devices.

Using this app, you can:

• Configure device channels and properties.
• Define waveforms in a workspace variable as a vector of double values, or as a timetable.
• Preview defined signals on several analog output channels for a selected device.
• Generate analog or audio output signals for a finite period (foreground) or continuously

(background).
• Create scripts in the Live Editor from the app configuration.

16 Apps

16-4

Open the Analog Output Generator App
• MATLAB Toolstrip: On the Apps tab, under Test and Measurement, click the app.
• MATLAB command prompt: Enter analogOutputGenerator.

Note Opening the Analog Output Generator deletes all your existing DataAcquisition interfaces in
MATLAB.

The DataAcquisition interface created by the Analog Output Generator is not accessible from the
MATLAB command line.

Limitations
The Analog Output Generator currently supports only analog voltage and current outputs, and audio
output generation.

This app supports devices only from the following vendors:

• National Instruments ("ni")
• Windows Sound Cards ("directsound")
• Measurement Computing ("mcc")

The app device list includes only those devices with supported subsystems.

See Also
Apps
Analog Input Recorder

Topics
“Generate Signals with the Analog Output Generator” on page 6-21

Introduced in R2019a

 Analog Output Generator

16-5

Blocks

17

Analog Input
Acquire data from multiple analog channels of data acquisition device
Library: Data Acquisition Toolbox

Description
The Analog Input block opens, initializes, configures, and controls an analog data acquisition device.
The opening, initialization, and configuration of the device occur once at the start of the model
execution. During the model run time, the block acquires data either synchronously (deliver the
current block of data the device is providing) or asynchronously (stream buffered incoming data).

The block has no input ports. It has one or more output ports, depending on the configuration you
choose in its dialog box.

Use the Analog Input block to incorporate live measured data into Simulink for:

• System characterization
• Algorithm verification
• System and algorithm modeling
• Model and design validation
• Controller design

The following diagram shows the basic analog input usage configuration, with which you can:

• Read acquired data at each time step or once per model execution.
• Analyze the data, or use it as input to a system in the model.
• Optionally display results.

Notes To use this block, you need both Data Acquisition Toolbox and Simulink software.

Some devices are not supported by the Simulink blocks in Data Acquisition Toolbox. To see if your
device supports Simulink, refer to Supported Hardware.

17 Blocks

17-2

https://www.mathworks.com/hardware-support/data-acquistion-software.html

You can use the Analog Input block only with devices that support clocked acquisition. To acquire
data using devices that do not support clocking, use the Analog Input (Single Sample) block.

Other Supported Features

• If you have DSP System Toolbox™, you can use this block for signal applications.
• This block supports the use of Simulink Accelerator™ mode, but not Rapid Accelerator or code

generation.
• The block supports the use of model referencing, so that your model can include other Simulink

models as modular components.

For more information on these features, see the “Simulink” documentation.

Ports
Output

Data — Acquired analog input
double

Acquired analog input data, returned as doubles. If using only one output port for all channels, each
scan is available as a matrix of scan blocksize by number of channels, M-by-N. If using a port for each
channel, each scan results in a blocksize-by-1 column vector on each port. Multiple ports are named
by channel names or device specified channel IDs.
Data Types: double

Relative timestamp — Relative timestamps of scans

Relative timestamp of each scan, returned as a double. This port is available when you check the
Output relative timestamps on page 17-0 parameter.
Data Types: double

Parameters
Use the Block Parameters dialog box to select your acquisition mode and to set other configuration
options.

Device — Device from which you want to acquire data

The device from which you want to acquire data. The items in the list vary, depending on which
devices you have connected to your system. Devices in the list are specified by adaptor or vendor
name and unique device ID, followed by the model name of the device, for example, ni Dev1
(USB-6255). The first available device is selected by default. A CompactDAQ chassis would be
shown as a single device identified by vendor name, chassis ID, and chassis model; for example, ni
cDAQ2 (cDAQ-9172).

Acquisition Mode — Synchronous setting
Asynchronous | Synchronous

Synchronous setting, specified as one of the following options.

 Analog Input

17-3

Asynchronous — In asynchronous mode, the data acquisition from the device and the simulation
happen in parallel. The model initiates the acquisition from the device when the simulation starts.
Data from the device is continuously acquired into a FIFO (first in, first out) buffer in parallel as the
simulation runs. At each time step, the model fetches data from the FIFO buffer and outputs a block
of data. The data in the FIFO buffer is contiguous according to the hardware acquisition clock.

Synchronous — In synchronous mode, the simulation is blocked while acquiring data from the
device. The model initiates the acquisition from the device at each time step and immediately enters a
wait state until the acquisition request has completed. This is unbuffered input; the block outputs the
latest block of data at each time step.

The following diagrams show the difference between synchronous and asynchronous modes for the
Analog Input block.

Synchronous Analog Input

At the first time step (T1), the acquisition is initiated for the required block of data (B1). The
simulation does not continue until B1 is completely acquired.

Asynchronous Analog Input – Scenario 1

17 Blocks

17-4

Scenario 1 shows the case when simulation speed outpaces data acquisition speed. At the first time
step (T1), the required block of data (B1) is still being acquired. Therefore, the simulation does not
continue until B1 is completely acquired.

Asynchronous Analog Input – Scenario 2

Scenario 2 shows the case when data acquisition speed outpaces simulation speed. At the first time
step (T1), the required block of data (B1) has been completely acquired. Therefore, the simulation
runs continuously.

Note Several factors, including device hardware and model complexity, can affect the simulation
speed, causing both scenarios 1 and 2 to occur within the same simulation.

Channels — Device channel selection and configuration
options depend on device

Device channel selection and configuration table. The channel configuration table lists the hardware
channels of your device, and lets you select and configure them. Specify which channels to acquire
data from (by default all the channels are selected). The following parameters are specified for each
selected channel:

Channel ID — Hardware channel ID specified by the device. The Channel ID column is read-only,
and the parameters are defined when the device is selected.

Name — Channel name. By default the table displays any names provided by the hardware, but you
can edit the names. For example, if the device is a sound card with two channels, you can name them
Left and Right.

Module — Device ID the channel belongs to. The Module column is read-only. If a CompactDAQ
chassis is selected, it shows the ID of the CompactDAQ module which the channel belongs to;
otherwise the ID of the device.

Measurement Type — Measurement type of the channel. This block supports only voltage
measurement types. (For other measurement types, use a DataAcquisition object in MATLAB.)

Input Range — Input ranges available for each channel supported by the hardware, defined when a
device is selected.

 Analog Input

17-5

Terminal Configuration — Specifies the hardware terminal configuration, such as single-ended,
differential, etc. The terminal configuration options are defined by the capabilities of the selected
channel.

Coupling — Hardware coupling configuration, such as AC or DC. The coupling type is defined when
a device is selected

Number of ports — Number of output data ports
1 for all channels | 1 per channel

Number of output data ports, specified as:

1 for all channels — Output data from a single port as a matrix, with a size of blocksize by number
of channels selected.

1 per channel — Output data from N ports, where N is equal to the number of selected channels.
Each output port is a column vector with a size of blocksize-by-1. For naming, each output port uses
the channel name if one was specified, otherwise the channel ID, for example, ai0.

Input sample rate — Device sampling rate
numeric value

The rate at which samples are acquired from the device, in samples per second. This is the sampling
rate for the hardware. The sample rate must be a positive real number within the range supported by
the selected hardware.

Block size — Number of scans per time step
integer value

The number of data samples to read from the block output at each time step for each channel. It must
be a positive integer greater than or equal to 2, within the range supported by the selected hardware.

Output relative timestamps — Add timestamp output port

Select this option to output the relative data timestamps, one for each sample. This option adds a new
output port to the block. The data type of this port is double, and corresponds to the time offset in
seconds of the sample related to the start of acquisition. For asynchronous acquisition, the acquisition
is initiated once at the start of model execution, the relative timestamp is a monotonically-increasing
number relative to the start of simulation. For synchronous acquisition, an acquisition is initiated at
every time step; as a result, the relative timestamp is reset to zero every time an acquisition is
initiated.

See Also
Blocks
Analog Input (Single Sample) | Analog Output | Analog Output (Single Sample) | Digital Input (Single
Sample) | Digital Output (Single Sample)

Introduced in R2016b

17 Blocks

17-6

Analog Output
Output data to multiple analog channels of data acquisition device
Library: Data Acquisition Toolbox

Description
The Analog Output block opens, initializes, configures, and controls an analog data acquisition device.
The opening, initialization, and configuration of the device occur once at the start of the model
execution. During the model run time, the block outputs data to the hardware synchronously (outputs
the block of data as it is provided). On every time step, the block performs a blocking synchronous
write to the hardware, outputting the entire input data.

The following diagram shows the timing of the synchronous analog output.

At the first time step (T1), data output is initiated and the corresponding block of data (B1) is output
to the hardware. The simulation does not continue until B1 is output completely.

The block has one or more input ports, depending on the option you choose in its parameters dialog
box. It has no output ports.

The Analog Output block inherits the sample time from the driving block connected to the input port.
The valid data types of the signal at the input port are double or native data types supported by the
hardware.

Notes To use this block, you need both Data Acquisition Toolbox and Simulink software.

You can use the Analog Output block only with devices that support clocked generation. To generate
data using devices that do not support clocking, use the Analog Output (Single Sample) block.

Some devices are not supported by the Simulink blocks in Data Acquisition Toolbox. To see if your
device supports Simulink, refer to Supported Hardware.

 Analog Output

17-7

https://www.mathworks.com/hardware-support/data-acquistion-software.html

Other Supported Features

• This block supports the use of Simulink Accelerator mode, but not Rapid Accelerator or code
generation.

• The block supports the use of model referencing, so that your model can include other Simulink
models as modular components.

For more information on these features, see the “Simulink” documentation.

Ports
Input

Data — Analog output to generate
double

Analog output to generate, specified as doubles. If using only one input port for all channels, specify
an M-by-N matrix for a blocksize of M scans on N channels. Each scan is a row across N channels.
Each channel outputs a column of M scans.

If using a port for each channel, specify a column of data for each channel on each port. Multiple
ports are named by channel names or device specified channel IDs.
Data Types: double

Parameters
Device — Device through which you want to output data
select available device

The device from which you want to generate data. The items in the list vary, depending on which
devices you have connected to your system. Devices in the list are specified by adaptor/vendor name
and unique device ID, followed by the model name of the device, for example, ni Dev1
(USB-6255). The first available device is selected by default. A CompactDAQ chassis is shown as a
single device; vendor name, chassis ID, and chassis model would be shown in the list, for example, ni
cDAQ2 (cDAQ-9172).

Channels — Device channel selection and configuration
options depend on device

Device channel selection and configuration table. The channel configuration table lists the hardware
channels of your device, and lets you select and configure them. Specify which channels to acquire
data from (by default all the channels are selected). The following parameters are specified for each
selected channel:

Channel ID — Hardware channel ID specified by the device. The Channel ID column is read-only,
and the parameters are defined when the device is selected.

Name — Channel name. By default the table displays any names provided by the hardware, but you
can edit the names. For example, if the device is a sound card with two channels, you can name them
Left and Right.

17 Blocks

17-8

Module — Device ID the channel belongs to. The Module column is read-only. If a CompactDAQ
chassis is selected, it shows the ID of the CompactDAQ module which the channel belongs to;
otherwise the ID of the device.

Measurement Type — Measurement type of the channel. This block supports only voltage
measurement types. (For other measurement types, use a DataAcquisition object in MATLAB.)

Output Range — Output ranges available for each channel supported by the hardware, defined
when a device is selected.

Number of ports — Number of input data ports
1 for all channels | 1 per channel

Number of input data ports, specified as:

1 for all channels (default) — One input port on the block for all channels. Provide data as a matrix,
with a size of scan blocksize by number of channels, M-by-N.

1 per channel — N input ports on the block, where N is equal to the number of selected channels.
Provide each port data as a column vector with a size of blocksize-by-1. For naming, each output port
uses the channel name if one was specified, otherwise the channel ID, for example, ao1.

Output sample rate — Device sampling rate
numeric value

The rate at which samples are output from Simulink to the device, in samples per second. This is the
sampling rate for the hardware. The default is defined when a device is selected. The sample rate
must be a positive real number within the range allowed for the selected hardware.

See Also
Blocks
Analog Input | Analog Input (Single Sample) | Analog Output (Single Sample) | Digital Input (Single
Sample) | Digital Output (Single Sample)

Introduced in R2016b

 Analog Output

17-9

Analog Input (Single Sample)
Acquire single sample from multiple analog channels of data acquisition device
Library: Data Acquisition Toolbox

Description
The Analog Input (Single Sample) block opens, initializes, configures, and controls an analog data
acquisition device. The opening, initialization, and configuration of the device occur once at the start
of the model execution. The block acquires a single sample every time step, synchronously from the
device, during the model run time.

The block has no input ports. It has one or more output ports, depending on the configuration you
choose in its dialog box.

Use the Analog Input (Single Sample) block to incorporate live measured data into Simulink for:

• System characterization
• Algorithm verification
• System and algorithm modeling
• Model and design validation
• Controller design

Analog input acquisition is done synchronously, according to the following diagram.

At the first time step (T1), data is acquired from the selected hardware channels. The simulation does
not continue until data is read from all channels.

Notes To use this block, you need both Data Acquisition Toolbox and Simulink software.

17 Blocks

17-10

Some devices are not supported by the Simulink blocks in Data Acquisition Toolbox. To see if your
device supports Simulink, refer to Supported Hardware.

You can use Analog Input (Single Sample) block only with devices that support single sample
acquisition. If the device does not support single sample acquisition, the model generates an error. To
acquire data from devices that do not support acquisition of a single sample (such as devices
designed for sound and vibration), use the Analog Input block.

Other Supported Features

• If you have DSP System Toolbox, you can use this block for signal applications.
• This block supports the use of Simulink Accelerator mode, but not Rapid Accelerator or code

generation.
• The block supports the use of model referencing, so that your model can include other Simulink

models as modular components.

For more information on these features, see the “Simulink” documentation.

Ports
Output

Data — Acquired analog input
double

Acquired analog input data, returned as doubles. If using only one output port for all channels, the
output is an array of data. If using a port for each channel, each scan results in a single value on each
port. Multiple ports are named by channel names or device specified channel IDs.
Data Types: double

Timestamp — Timestamp of scan

Timestamp of scan, returned as a double. This port is available when you check the Output timestamp
on page 17-0 parameter.
Data Types: double

Parameters
Use the Block Parameters dialog box to select your device and to set other configuration options.

Device — Device from which you want to acquire data

The device from which you want to acquire data. The items in the list vary, depending on which
devices you have connected to your system. Devices in the list are specified by adaptor or vendor
name and unique device ID, followed by the model name of the device, for example, ni Dev1
(USB-6255). The first available device is selected by default. A CompactDAQ chassis would be
shown as a single device identified by vendor name, chassis ID, and chassis model; for example, ni
cDAQ2 (cDAQ-9172).

Channels — Device channel selection and configuration
options depend on device

 Analog Input (Single Sample)

17-11

https://www.mathworks.com/hardware-support/data-acquistion-software.html

Device channel selection and configuration table. The channel configuration table lists the hardware
channels of your device, and lets you select and configure them. Specify which channels to acquire
data from (by default all the channels are selected). The following parameters are specified for each
selected channel:

Channel ID — Hardware channel ID specified by the device. The Channel ID column is read-only,
and the parameters are defined when the device is selected.

Name — Channel name. By default the table displays any names provided by the hardware, but you
can edit the names. For example, if the device is a sound card with two channels, you can name them
Left and Right.

Module — Device ID the channel belongs to. The Module column is read-only. If a CompactDAQ
chassis is selected, it shows the ID of the CompactDAQ module which the channel belongs to;
otherwise the ID of the device.

Measurement Type — Measurement type of the channel. This block supports only voltage
measurement types. (For other measurement types, use a DataAcquisition object in MATLAB.)

Input Range — Input ranges available for each channel supported by the hardware, defined when a
device is selected.

Terminal Configuration — Specifies the hardware terminal configuration, such as single-ended,
differential, etc. The terminal configuration options are defined by the capabilities of the selected
channel.

Coupling — Hardware coupling configuration, such as AC or DC. The coupling type is defined when
a device is selected

Number of ports — Number of output data ports
1 for all channels | 1 per channel

Number of output data ports, specified as:

1 for all channels — Outputs the acquired data from a single port as a 1-by-N vector with a length
equal to the number of channels selected.

1 per channel — Outputs the acquired data from N ports, where N is equal to the number of
selected channels. Each port output is a 1-by-1 double. For naming, each output port uses the channel
name if one was specified, otherwise the channel ID, for example, ai0.

Sample time — Block execution rate
1 (default)

Specifies the sample time of the block during the simulation. This is the rate at which the block is
executed during simulation. The default value is 1 (seconds). For more information, see “What Is
Sample Time?” (Simulink).

Output timestamp — Add timestamp output port

Select this option to output the absolute timestamp of the scan. This option adds a new output port to
the block. The data type of this port is double (datenum), which corresponds to a serial date number.
You can convert the datenum into a datetime value with the datetime function.

17 Blocks

17-12

See Also
Blocks
Analog Input | Analog Output | Analog Output (Single Sample) | Digital Input (Single Sample) | Digital
Output (Single Sample)

Introduced in R2016b

 Analog Input (Single Sample)

17-13

Analog Output (Single Sample)
Output single sample to multiple analog channels of data acquisition device
Library: Data Acquisition Toolbox

Description
The Analog Output (Single Sample) block opens, initializes, configures, and controls an analog data
acquisition device. The opening, initialization, and configuration of the device occur once at the start
of the model execution. The block outputs a single sample every time step, synchronously to the
hardware, during the model run time.

The block has one or more input ports, depending on the option you choose in its dialog box. It has no
output ports. The valid data type of the signal at the input port is double.

The Analog Output (Single Sample) block inherits the sample time from the driving block connected
to the input port. Analog output is done synchronously, according to the following diagram.

At the first time step (T1), data is output to the selected hardware channels. The simulation does not
continue until data is output to all channels.

Notes To use this block, you need both Data Acquisition Toolbox and Simulink software.

You can use the Analog Output (Single Sample) block only with devices that support single sample
output. To send data using devices that do not support acquisition of a single sample (such as devices
designed for sound and vibration), use the Analog Output block.

Some devices are not supported by the Simulink blocks in Data Acquisition Toolbox. To see if your
device supports Simulink, refer to Supported Hardware.

17 Blocks

17-14

https://www.mathworks.com/hardware-support/data-acquistion-software.html

Other Supported Features

• This block supports the use of Simulink Accelerator mode, but not Rapid Accelerator or code
generation.

• The block supports the use of model referencing, so that your model can include other Simulink
models as modular components.

For more information on these features, see the “Simulink” documentation.

Ports
Input

Data — Analog output to generate
double

Analog output to generate, specified as doubles. If using only one input port for all channels, provide
a 1-by-N vector for a single scan on all N channels.

If using a port for each channel, provide a double value to each port. Multiple ports are named by
channel names or device specified channel IDs.
Data Types: double

Parameters
Device — Device through which you want to output data
select available device

The device from which you want to generate data. The items in the list vary, depending on which
devices you have connected to your system. Devices in the list are specified by adaptor/vendor name
and unique device ID, followed by the model name of the device, for example, ni Dev1
(USB-6255). The first available device is selected by default. A CompactDAQ chassis is shown as a
single device; vendor name, chassis ID, and chassis model would be shown in the list, for example, ni
cDAQ2 (cDAQ-9172).

Channels — Device channel selection and configuration
options depend on device

Device channel selection and configuration table. The channel configuration table lists the hardware
channels of your device, and lets you select and configure them. Specify which channels to acquire
data from (by default all the channels are selected). The following parameters are specified for each
selected channel:

Channel ID — Hardware channel ID specified by the device. The Channel ID column is read-only,
and the parameters are defined when the device is selected.

Name — Channel name. By default the table displays any names provided by the hardware, but you
can edit the names. For example, if the device is a sound card with two channels, you can name them
Left and Right.

Module — Device ID the channel belongs to. The Module column is read-only. If a CompactDAQ
chassis is selected, it shows the ID of the CompactDAQ module which the channel belongs to;
otherwise the ID of the device.

 Analog Output (Single Sample)

17-15

Measurement Type — Measurement type of the channel. This block supports only voltage
measurement types. (For other measurement types, use a DataAcquisition object in MATLAB.)

Output Range — Output ranges available for each channel supported by the hardware, defined
when a device is selected.

Number of ports — Number of input data ports
1 for all channels | 1 per channel

Number of input data ports, specified as:

1 for all channels (default) — One input port on the block provides data for all channels. Provide
data as a 1-by-N vector for N channels.

1 per channel — N input ports on the block, where N is equal to the number of selected channels.
Provide data as a double value to each port. For naming, each output port uses the channel name if
one was specified, otherwise the channel ID, for example, ao1.

Sample time — Block sample time
numeric value

Block sample time, specifies the sample time of the block during the simulation. This is the rate at
which the block is executed during simulation. The default value is 1. For more information, see
“What Is Sample Time?” (Simulink).

See Also
Blocks
Analog Input | Analog Input (Single Sample) | Analog Output | Digital Input (Single Sample) | Digital
Output (Single Sample)

Introduced in R2016b

17 Blocks

17-16

Digital Input (Single Sample)
Acquire single sample from multiple digital lines of data acquisition device
Library: Data Acquisition Toolbox

Description
The Digital Input (Single Sample) block synchronously outputs the latest scan of data available from
the digital lines selected at each simulation time step. It acquires unbuffered digital data, and
delivers this as a vector of boolean values.

The block has no input ports. It has one or more output ports, depending on the option you choose in
its dialog box.

The block inherits the sample time of the model. Digital input acquisition is done synchronously,
according to the following diagram.

At the first time step (T1), data is acquired from the selected hardware lines. The simulation does not
continue until data is read from all lines.

Note To use this block, you need both Data Acquisition Toolbox and Simulink software.

Some devices are not supported by the Simulink blocks in Data Acquisition Toolbox. To see if your
device supports Simulink, refer to Supported Hardware.

Other Supported Features

• This block supports the use of Simulink Accelerator mode, but not Rapid Accelerator or code
generation.

 Digital Input (Single Sample)

17-17

https://www.mathworks.com/hardware-support/data-acquistion-software.html

• The block supports the use of model referencing, so that your model can include other Simulink
models as modular components.

For more information on these features, see the “Simulink” documentation.

Ports
Output

Data — Acquired digital input
boolean

Acquired digital input data, returned as booleans. If using only one output port for all lines, the
output is a 1-by-N vector for N channels. If using a port for each line, each scan results in a single
boolean on each port. Multiple ports are named by line names or device specified line IDs.
Data Types: Boolean

Timestamp — Timestamp of scan
double

Timestamp of scan, returned as a double. This port is available when you check the Output timestamp
on page 17-0 parameter.
Data Types: double

Parameters
Device — Device from which you want to acquire data

The device from which you want to acquire data. The items in the list vary, depending on which
devices you have connected to your system. Devices in the list are specified by adaptor or vendor
name and unique device ID, followed by the model name of the device, for example, ni Dev1
(USB-6255). The first available device is selected by default. A CompactDAQ chassis would be
shown as a single device identified by vendor name, chassis ID, and chassis model; for example, ni
cDAQ2 (cDAQ-9172).

Lines — Device line selection and configuration
options depend on device

Line ID — ID of the hardware line (for example, port0/line0). This is automatically detected and filled
in by the selected device, and is read-only.

Name — Hardware line name. This is automatically detected and filled in from the hardware, though
you can edit the name.

Module — Device ID that the line belongs to. The Module column is read-only. If a CompactDAQ
chassis is selected, it shows the ID of the CompactDAQ module which the line belongs to; otherwise
the ID of the device.

Number of ports — Number of output data ports
1 for all lines | 1 per line

Number of output data ports, specified as:

17 Blocks

17-18

1 for all lines — The block has only one output port for all of the lines that are selected in the table.
Acquired data is returned as a 1-by-N vector of boolean values, whose size is the number of lines.

1 per line — The block has one output port per selected line. Data is returned as a 1-by-1 boolean
value on each port. The name of each output port is the name specified in the table for each line. If no
name is provided, the name is the Line ID. For example, if line 2 of hardware port 3 is selected, and
you did not specify a name in the line table, port3/line2 appears in the block. Data size for each
line is 1-by-1.

Sample time — Block execution rate
1 (default)

Specifies the sample time of the block during the simulation. This is the rate at which the block is
executed during simulation. The default value is 1 (seconds). For more information, see “What Is
Sample Time?” (Simulink).

Output timestamp — Add timestamp output port

Select this option to output the absolute timestamp of the scan. This option adds a new output port to
the block. The data type of this port is double (datenum), which corresponds to a serial date number.
You can convert the datenum into a datetime value with the datetime function.

See Also
Blocks
Analog Input | Analog Input (Single Sample) | Analog Output | Analog Output (Single Sample) | Digital
Output (Single Sample)

Introduced in R2016b

 Digital Input (Single Sample)

17-19

Digital Output (Single Sample)
Output single sample to multiple digital lines of data acquisition device
Library: Data Acquisition Toolbox

Description
The Digital Output (Single Sample) block synchronously outputs the latest set of data to the hardware
at each simulation time step. It outputs unbuffered digital data. Specify the output data as a vector of
boolean values.

The block has no output ports. It can have one or more input ports, depending on the option you
choose in its dialog box. The data type of the signal at the input port must be a boolean data type.

The Digital Output (Single Sample) block inherits the sample time from the driving block connected
to the input port. Digital output is done synchronously, according to the following diagram.

At the first time step (T1), data is output to the selected hardware lines. The simulation does not
continue until data is output to all lines.

Note To use this block, you need both Data Acquisition Toolbox and Simulink software.

Some devices are not supported by the Simulink blocks in Data Acquisition Toolbox. To see if your
device supports Simulink, refer to Supported Hardware.

Other Supported Features

• This block supports the use of Simulink Accelerator mode, but not Rapid Accelerator or code
generation.

17 Blocks

17-20

https://www.mathworks.com/hardware-support/data-acquistion-software.html

• The block supports the use of model referencing, so that your model can include other Simulink
models as modular components.

For more information on these features, see the “Simulink” documentation.

Ports
Input

Data — Generated digital output data
boolean

Generated digital output data, specified as booleans. If using only one input port for all lines, provide
a 1-by-N vector of data. If using a port for each line, provide a single value on each port. Multiple
ports are named by line names or device specified line IDs.
Data Types: Boolean

Parameters
Device — Device with which you want to generate data

The device from which you want to acquire data. The items in the list vary, depending on which
devices you have connected to your system. Devices in the list are specified by adaptor or vendor
name and unique device ID, followed by the model name of the device, for example, ni Dev1
(USB-6255). The first available device is selected by default. A CompactDAQ chassis would be
shown as a single device identified by vendor name, chassis ID, and chassis model; for example, ni
cDAQ2 (cDAQ-9172).

Lines — Device line selection and configuration
options depend on device

Line ID — ID of the hardware line (for example, port0/line0). This is automatically detected and filled
in by the selected device, and is read-only.

Name — Hardware line name. This is automatically detected and filled in from the hardware, though
you can edit the name.

Module — Device ID that the line belongs to. The Module column is read-only. If a CompactDAQ
chassis is selected, it shows the ID of the CompactDAQ module which the line belongs to; otherwise
the ID of the device.

Number of ports — Number of input data ports
1 for all lines | 1 per line

Number of input data ports, specified as:

1 for all lines — The block has only one input port for all of the lines that are selected in the table.
Generated data is defined as a 1-by-N row vector of boolean values, whose size is the number of lines.

1 per line — The block has one input port per selected line. The name of each input port is the name
specified in the table for each line. If no name is provided, the name is the Line ID. For example, if
line 2 of hardware port 3 is selected, and you did not specify a name in the line table, port3/line2
appears in the block. Data size for each line is 1-by-1.

 Digital Output (Single Sample)

17-21

Sample time — Block execution rate
1 (default)

Specifies the sample time of the block during the simulation. This is the rate at which the block is
executed during simulation. The default value is 1 (seconds). For more information, see “What Is
Sample Time?” (Simulink).

See Also
Blocks
Analog Input | Analog Input (Single Sample) | Analog Output | Analog Output (Single Sample) | Digital
Input (Single Sample)

Introduced in R2016b

17 Blocks

17-22

Troubleshooting Your Hardware
This appendix describes simple tests you can perform to troubleshoot your data acquisition hardware.
The tests involve using software provided by the vendor, the operating system (sound cards), or Data
Acquisition Toolbox software. The sections are as follows.

A

Troubleshooting Tips

In this section...
“Find Devices and Create a DataAcquisition Interface” on page A-2
“Is My NI-DAQ Driver Supported?” on page A-3
“Why Doesn’t My NI Hardware Work?” on page A-3
“Why Was My DataAcquisition Deleted?” on page A-4
“Cannot Find Hardware Vendor” on page A-4
“Cannot Find Devices” on page A-4
“What Is a Reserved Hardware Error?” on page A-5
“Network Device Appears Unsupported” on page A-5
“ADC Overrun Error with External Clock” on page A-6
“Cannot Add Clock Connection to PXI Devices” on page A-6
“Cannot Complete Long Foreground Acquisition” on page A-6
“Cannot Use PXI 4461 and 4462 Together” on page A-6
“Cannot Get Correct Scan Rate with Digilent Devices” on page A-6
“Cannot Simultaneously Acquire and Generate with myDAQ Devices” on page A-6
“Simultaneous Analog Input and Output Not Synchronized Correctly” on page A-7
“Counter Single Scan Returns NaN” on page A-7
“External Clock Will Not Trigger Scan” on page A-7
“Why Does My S/PDIF Device Time Out?” on page A-7
“MOTU Device Not Working Correctly” on page A-7

Find Devices and Create a DataAcquisition Interface
Identify the devices you can access:

dev = daqlist

dev =

 9×5 table

 VendorID DeviceID Description Model DeviceInfo
 _____________ ___________ __ __ ____________________

 "ni" "Dev1" "National Instruments(TM) USB-6211" "USB-6211" [1×1 daq.DeviceInfo]
 "ni" "Dev2" "National Instruments(TM) USB-6218" "USB-6218" [1×1 daq.DeviceInfo]
 "ni" "Dev3" "National Instruments(TM) USB-6255" "USB-6255" [1×1 daq.DeviceInfo]
 "ni" "Dev4" "National Instruments(TM) USB-6509" "USB-6509" [1×1 daq.DeviceInfo]
 "ni" "PXI1Slot2" "National Instruments(TM) PXIe-6341" "PXIe-6341" [1×1 daq.DeviceInfo]
 "directsound" "Audio0" "DirectSound Primary Sound Capture Driver" "Primary Sound Capture Driver" [1×1 daq.DeviceInfo]
 "directsound" "Audio1" "DirectSound Headset Microphone (Plantronics BT600)" "Headset Microphone (Plantronics BT600)" [1×1 daq.DeviceInfo]
 "directsound" "Audio2" "DirectSound Primary Sound Driver" "Primary Sound Driver" [1×1 daq.DeviceInfo]
 "directsound" "Audio3" "DirectSound Headset Earphone (Plantronics BT600)" "Headset Earphone (Plantronics BT600)" [1×1 daq.DeviceInfo]

Create a DataAcquisition object for a specific vendor:
d = daq("ni")

For more information on the DataAcquisition interface, see “The DataAcquisition Object” on page 3-2.

A Troubleshooting Tips

A-2

To learn more about how to communicate with CompactDAQ devices, see “Interface Workflow” on
page 4-2.

Is My NI-DAQ Driver Supported?
Data Acquisition Toolbox software is compatible with only specific versions of the NI-DAQ driver, and
is not guaranteed to work with any other versions. For a list of the NI-DAQ driver versions that are
compatible with Data Acquisition Toolbox software, see https://www.mathworks.com/hardware-
support/data-acquistion-software.html, and click the link for this vendor.

To see your installed driver version, type:
v = daqvendorlist

v =

 5×4 table

 ID FullName AdaptorVersion DriverVersion
 _____________ ____________________________ ______________ _________________

 "ni" {'National Instruments(TM)'} "4.1 (R2020a)" "18.5.0 NI-DAQmx"
 "adi" {'Analog Devices Inc.' } "4.1 (R2020a)" "1.0"
 "directsound" {'DirectSound' } "4.1 (R2020a)" "n/a"
 "digilent" {'Digilent Inc.' } "4.1 (R2020a)" "3.7.20"
 "mcc" {'Not Operational' } "4.1 (R2020a)" "unknown"

If the version in the DriverVersion field does not match the minimum requirements specified on
the product page on the MathWorks website, use the Add-On Manager to update your support
package.

If your driver is incompatible with Data Acquisition Toolbox, verify that your hardware is functioning
properly before updating drivers. If your hardware is not functioning properly, you are using
unsupported drivers. For the latest NI-DAQ drivers, visit the National Instruments website at
https://www.ni.com/.

To find driver version in the National Instruments Measurement & Automation Explorer:

1 Click Start > Programs > National Instruments > Measurement & Automation Explorer.
2 Select Help > System Information.

Why Doesn’t My NI Hardware Work?
Use the Test Panel to troubleshoot your National Instruments hardware. The Test Panel allows you
to test each subsystem supported by your device, and is installed as part of the NI-DAQmx driver
software. Right-click the device in the Measurement & Automation Explorer and choose Test Panel.

For example, to verify that the analog input subsystem on your PCIe-6363 device is operating,
connect a known signal (similar to the signal produced by a function generator) to one or more
channels, using a screw terminal panel.

If the Test Panel does not provide you with the expected results for the subsystem, and you are sure
that your test setup is configured correctly, then the hardware is not performing correctly.

For National Instruments hardware support, visit https://www.ni.com/.

 Troubleshooting Tips

A-3

https://www.mathworks.com/hardware-support/data-acquistion-software.html
https://www.mathworks.com/hardware-support/data-acquistion-software.html
https://www.ni.com/
https://www.ni.com/

Why Was My DataAcquisition Deleted?
An interface object can might silently be deleted while executing a background operation. This could
be caused by the object going out of scope at the end of a MATLAB function, before the background
task completes. To avoid this, insert a pause after starting the operation.

Cannot Find Hardware Vendor
If you try to get vendor information using daqvendorlist, and receive one of the following errors:

• NI-DAQmx driver mismatch:
Diagnostic Information from vendor: NI: There was a driver error while
loading the MEX file to communicate with National Instruments hardware.
It is possible that the NI-DAQmx driver is not installed or is older than
the required minimum version of '8.7'.

Install the NI-DAQmx driver of version specified in the error message.

If you have a version of the NI-DAQmx driver already installed, update your installation to the
minimum required version suggested in the error message.

• No vendors found:

No data acquisition vendors available.

Reinstall Data Acquisition Toolbox software and applicable support packages.
• Corrupted or missing toolbox components:

Diagnostic Information from vendor: NI: The required MEX file to communicate
with National Instruments hardware is not in the expected location.

Reinstall Data Acquisition Toolbox software and applicable support packages.
Diagnostic Information from vendor: NI: The required MEX file to communicate
with National Instruments hardware exists but appears to be corrupt.

Reinstall Data Acquisition Toolbox software and applicable support packages.

Cannot Find Devices
If you try to find information using daqlist and:

• Do not see the expected device listed, refresh the toolbox, with

daqreset

If you still do not see the expected devices, go to the National Instruments Measurement &
Automation Explorer (NI MAX) and examine the devices installed on your CompactDAQ chassis.

• Receive one of the following errors

• No data acquisition devices available.

• Go to NI MAX and examine the devices installed on your CompactDAQ chassis.
• If you cannot see your devices in NI MAX, check to see if you have turned on and connected

your chassis.
• If you have turned on and connected your chassis and issued daqreset, and you can see

the devices in NI MAX, reinstall Data Acquisition Toolbox software.

A Troubleshooting Tips

A-4

• The requested subsystem does not exist on this device.

You could be:

• Using an output device to add input channels, or an input device to add output channels.
• Using an unsupported device. See “Data Acquisition Toolbox Supported Hardware”.

• If you are using NI 9402 with the counter/timer subsystem with the cDAQ-9172 chassis, plug the
module into slots 5 or 6 only. If you plug the module into one of the other slots, it will not show any
counter/timer subsystem.

• If you are using an Ethernet or WiFi network CompactDAQ chassis, reserve the chassis in National
Instruments Measurement & Automation Explorer (NI Max) first. Only one system can reserve this
chassis at a time. For more information, see Why can't Data Acquisition Toolbox detect my NI DAQ
devices connected through a cDAQ network chassis?.

What Is a Reserved Hardware Error?
If you receive the following error:
The hardware is reserved. If you are using it in another
object use the release function to unreserve the hardware. If you are using it in an
external program exit that program. Then try this operation again.

Identify the DataAcquisition that is currently not using this device but has reserved it, and release the
associated hardware resources. If the device is reserved by:

Another DataAcquisition in the current MATLAB program.
Do one of the following:

• Use release to release the device from the other DataAcquisition.
• Delete the other DataAcquisition object.

Another DataAcquisition in a separate MATLAB program.
Do one of the following:

• Use release to release the device from the other DataAcquisition.
• Delete the other DataAcquisition object.
• Exit the other MATLAB program.

Another application.
Exit the other application.

In these measures do not work, reset the device from NI MAX.

Note Your network device might also appear as unsupported in the device information if it is
reserved or disconnected.

Network Device Appears Unsupported
• If your network device appears as unsupported or unavailable, make sure that the device is

connected and reserved in National Instruments Measurement and Automation Explorer. Use
daqreset to reset devices settings.

 Troubleshooting Tips

A-5

https://www.mathworks.com/matlabcentral/answers/354916-why-cannot-data-acquisition-toolbox-detect-my-ni-daq-devices-connected-through-a-cdaq-network-chassi
https://www.mathworks.com/matlabcentral/answers/354916-why-cannot-data-acquisition-toolbox-detect-my-ni-daq-devices-connected-through-a-cdaq-network-chassi

• If you see this timeout error when communicating with a network device:
Network timeout error while communicating with device 'cDAQ9188-1595393Mod4'

reconnect the device in National Instruments Measurement and Automation Explorer and execute
daqreset in MATLAB to reset the devices settings.

ADC Overrun Error with External Clock
If you see this error when you synchronize acquisition using an external clock,
ADC Overrun Error: If you are using an external clock, make sure that
the clock frequency matches scan rate.

• Check your external clock for the presence of noise or glitches.
• Check the frequency of your external clock. Make sure that it matches the DataAcquisition Rate

property value.

Cannot Add Clock Connection to PXI Devices
When you try to synchronize operations using a PXI 447x series device, you see this error:
"DSA device 'PXI1Slot2' does not support sample clock synchronization. Check device's user manual.

National Instruments DSA devices like the PXI 447x, do not support sample clock synchronization.
You cannot synchronize these devices in the DataAcquisition interface using addclock.

Cannot Complete Long Foreground Acquisition
When you try to acquire data in the foreground for a long period, you might get an out-of-memory
error. Switch to background acquisitions and process data as it is received or save the data to a file to
mitigate this issue.

Cannot Use PXI 4461 and 4462 Together
You cannot use a PXI 4461 and a 4462 together for synchronization, when the PXI 4461 is in the
timing slot of the chassis.

Cannot Get Correct Scan Rate with Digilent Devices
The scan rate of a Digilent device can be limited by the hardware buffer size. See “Digilent Analog
Discovery Hardware Limitations” on page B-4 for more information on maximum and minimum
allowable rates.

Cannot Simultaneously Acquire and Generate with myDAQ Devices
You cannot acquire and generate synchronous data using myDAQ devices because they do not share a
hardware clock. If you have both input and output channels in a DataAcquisition, when you start it
you achieve near-simultaneous acquisition and generation. See “Automatic Synchronization” on page
13-4 for more information.

A Troubleshooting Tips

A-6

Simultaneous Analog Input and Output Not Synchronized Correctly
To simultaneously acquire and generate synchronized analog signals in the same DataAcquisition, try
using an external trigger.

Counter Single Scan Returns NaN
An input single scan on counter input channels might return a NaN. If this occurs:

• Make sure that the signal voltage complies with TTL voltage specifications.
• Make sure that the channel frequency is within the specified frequency range.

External Clock Will Not Trigger Scan
Adding an external clock to your DataAcquisition might not trigger a scan unless you set the Rate
property value to match the expected external clock frequency.

Why Does My S/PDIF Device Time Out?
S/PDIF audio ports appear in the device list even when you have no devices plugged in.

• If you add this device (port) to your DataAcquisition and you have no device plugged into the port,
the operation times out.

• If you have a device plugged into the S/PDIF port, you may need to match the DataAcquisition rate
to the device scan rate to get accurate readings. Refer to your device documentation for
information.

MOTU Device Not Working Correctly
MOTU devices Ultralight-mk3 and Traveler-mk3 may not work with DirectSound and Data Acquisition
Toolbox versions R2014a and R2014b. If you have these devices, specify the device to use stereo
pairs:

• In your MOTU Audio Console check "Use Stereo Pairs for Windows Audio" check box.
• Specify desired sample rate in the Sample Rate field.

 Troubleshooting Tips

A-7

Contact MathWorks for Technical Support
If you need support from MathWorks, visit the support website at https://www.mathworks.com/
support/.

Before contacting MathWorks, you should run the daqsupport function in MATLAB. This function
returns diagnostic information such as:

• The versions of MathWorks products you are using
• Your MATLAB software path
• The characteristics of your hardware

The output from daqsupport is automatically saved to a text file, which you can use to help
troubleshoot your problem or send to MathWorks technical support if requested.

A Contact MathWorks for Technical Support

A-8

https://www.mathworks.com/support/
https://www.mathworks.com/support/

Hardware Limitations by Vendor
This topic describes limitations of using hardware in the Data Acquisition Toolbox based on
limitations places by the hardware vendor:

B

Limitations by Vendor
For some vendors, there are limitations in the toolbox support for their functionality. See the
following topics for each vendor.

• “Digilent Analog Discovery Hardware Limitations” on page B-4
• “Measurement Computing Hardware Limitations” on page B-5
• “National Instruments Hardware Limitations” on page B-3
• “Analog Devices ADALM1000 Limitations” on page B-6

B Limitations by Vendor

B-2

National Instruments Hardware Limitations
• Required hardware drivers and any other device-specific software is described in the

documentation provided by your hardware vendor. For more information, see NI-DAQmx Support
from Data Acquisition Toolbox.

• You can use PXI_STAR with the addtrigger and addclock functions. All supported PXI modules
automatically use the reference Clock PXI_CLK10.

• Objects created for National Instruments devices, and used with the NI-DAQmx adaptor, have the
following behavior when you attempt single scan (on-demand) operations:

• The first time the command is used with the object, the corresponding subsystem of the device
is reserved by the DataAcquisition object in MATLAB.

• If you then try to access that subsystem in a different MATLAB DataAcquisition, or any other
application from the same computer, you might receive an error message informing you that
the subsystem is reserved. Use release to unreserve the subsystem from the other
DataAcquisition.

• You cannot acquire and generate synchronous data using myDAQ devices because they do not
share a hardware clock. If you have both input and output channels in a DataAcquisition, when
you start it you achieve near-simultaneous acquisition and generation. See “Automatic
Synchronization” on page 13-4 for more information.

• NI USB devices that have their own power supply can shut down if the driver does not set the
USB power correctly.

• Data Acquisition Toolbox does not support direct access to device onboard clocks for clocked
sampling when using only digital input/output channels with a DataAcquisition object. For
workarounds and information on clocked digital sampling, see the following topics:

• “Acquire Digital Data Using a Shared Clock” on page 9-5
• “Acquire Digital Data Using an External Clock” on page 9-6
• “Acquire Digital Data Using a Counter Output Channel as External Clock” on page 9-8

 National Instruments Hardware Limitations

B-3

https://www.mathworks.com/hardware-support/nidaqmx.html
https://www.mathworks.com/hardware-support/nidaqmx.html

Digilent Analog Discovery Hardware Limitations
• You cannot use multiple Digilent devices in the same DataAcquisition interface. If you need to use

multiple devices, add one device per DataAcquisition and start them sequentially.
• Digilent devices limit the minimum and maximum allowable rate of sampling based on channel

types:

• Analog input only: 0.1 – 1,000,000
• Analog output only: 4,096 – 1,000,000
• Input and output: 8,192 – 300,000

Data Acquisition Toolbox conforms to the Digilent Player Mode for the Arbitrary Waveform
Generator.

• You cannot use background operations with Digilent devices. You can only perform foreground
operations.

• You cannot perform synchronous and triggered operations using a Digilent device.
• You cannot access the digital input and output capabilities of a Digilent device.

B Digilent Analog Discovery Hardware Limitations

B-4

Measurement Computing Hardware Limitations
• For your Measurement Computing device to appear in the output of the daqlist function, you

must first detect it in InstaCal.
• MCC devices are not supported by the Simulink blocks of the Data Acquisition Toolbox block

library.
• External clocking and triggering of MCC devices is not supported.
• Support for MCC devices is limited to analog output voltage and analog input voltage

measurements.
• MCC DEMO-BOARD devices simulated in InstaCal are not supported.

 Measurement Computing Hardware Limitations

B-5

Analog Devices ADALM1000 Limitations
The following restrictions and limitations apply when programming the Analog Devices ADALM1000.
Some are restrictions of the hardware, some are restrictions imposed by Data Acquisition Toolbox.

• You cannot add channels from multiple ADALM1000 modules in the same DataAcquisition object.
To recover from attempting this, you might need to execute daqreset.

• You cannot simultaneously source and measure voltage on the same channel, nor simultaneously
source and measure current on the same channel.

• You cannot execute a single-scan operation that performs both source and measurement
simultaneously.

• You cannot use AC coupling, nor differential terminal configurations.
• You cannot use triggers or digital pins.
• You cannot measure current without generating an output voltage.
• When specified output ranges are exceeded, the device might reset itself. Any measurements

taken during this time might be unreliable until the reset is complete.

Not all data acquisition background operations are supported. Use foreground operation for full
generation and acquisition functionality.

B Analog Devices ADALM1000 Limitations

B-6

Examples by Vendor
See the following topics for examples of each hardware vendor.

• “Analog Devices ADALM1000 Examples” on page B-8
• “Digilent Analog Discovery Hardware Examples” on page B-9
• “Measurement Computing Hardware Examples” on page B-10
• “National Instruments Hardware Examples” on page B-11
• “Windows Sound Card Examples” on page B-13

 Examples by Vendor

B-7

Analog Devices ADALM1000 Examples
“Characterize an LED with ADALM1000” on page 18-137

“Estimate the Transfer Function of a Circuit with ADALM1000” on page 18-141

See Also

More About
• “Digilent Analog Discovery Hardware Examples” on page B-9
• “Measurement Computing Hardware Examples” on page B-10
• “National Instruments Hardware Examples” on page B-11
• “Windows Sound Card Examples” on page B-13

B Analog Devices ADALM1000 Examples

B-8

Digilent Analog Discovery Hardware Examples
“Getting Started Acquiring Data with Digilent Analog Discovery” on page 18-66

“Getting Started Generating Data with Digilent Analog Discovery” on page 18-69

“Acquiring and Generating Data at the Same Time with Digilent Analog Discovery” on page 18-71

“Generate Standard Periodic Waveforms Using Digilent Analog Discovery” on page 18-74

“Generate Arbitrary Periodic Waveforms Using Digilent Analog Discovery” on page 18-77

See Also

More About
• “Analog Devices ADALM1000 Examples” on page B-8
• “Measurement Computing Hardware Examples” on page B-10
• “National Instruments Hardware Examples” on page B-11
• “Windows Sound Card Examples” on page B-13

 Digilent Analog Discovery Hardware Examples

B-9

Measurement Computing Hardware Examples
“Getting Started with MCC Devices” on page 18-7

“Discover MCC Devices” on page 18-12

“Acquire Data from Multiple Channels using an MCC Device” on page 18-22

See Also

More About
• “Analog Devices ADALM1000 Examples” on page B-8
• “Digilent Analog Discovery Hardware Examples” on page B-9
• “National Instruments Hardware Examples” on page B-11
• “Windows Sound Card Examples” on page B-13

B Measurement Computing Hardware Examples

B-10

National Instruments Hardware Examples

Getting Started and Device Discovery
“Getting Started with NI Devices” on page 18-3

“Discover NI Devices” on page 18-10

Analog Input and Output
“Acquire Data Using NI Devices” on page 18-14

“Acquire Continuous and Background Data Using NI Devices” on page 18-18

“Acquire Data From an Accelerometer” on page 18-25

“Measure Strain Using an Analog Bridge Sensor” on page 18-27

“Acquire Temperature Data From a Thermocouple” on page 18-30

“Acquire Temperature Data From an RTD” on page 18-32

“Acquire and Analyze Sound Pressure Data From an IEPE Microphone” on page 18-35

“Acquire and Analyze Noisy Clock Signals” on page 18-39

“Generate Voltage Signals Using NI Devices” on page 18-49

“Generate Signals on NI Devices That Output Current” on page 18-52

“Generate Continuous and Background Signals Using NI Devices” on page 18-55

“Acquire Data and Generate Signals at the Same Time” on page 18-58

“Log Analog Input Data to a File Using NI Devices” on page 18-62

“Capture Data with Software-Analog Triggering” on page 18-90

“Create an App for Analog Triggered Data Acquisition” on page 18-148

“Create an App for Live Data Acquisition” on page 18-155

Digital Input and Output
“Control Stepper Motor Using Digital Outputs” on page 18-113

“Communicate with I2C Devices and Analyze Bus Signals Using Digital IO” on page 18-116

Counters and Timers
“Count Pulses on a Digital Signal Using NI Devices” on page 18-99

“Measure Frequency Using NI Devices” on page 18-102

 National Instruments Hardware Examples

B-11

“Measure Pulse Width Using NI Devices” on page 18-104

“Generate Pulse Width Modulated Signals Using NI Devices” on page 18-106

“Measure Angular Position with an Incremental Rotary Encoder” on page 18-108

Simultaneous and Synchronized Operations
“Synchronize NI PCI Devices Using RTSI” on page 18-123

“Start a Multi-Trigger Acquisition on an External Event” on page 18-126

“Acquire Data from Two Devices at Different Rates” on page 18-134

Simulink Data Acquisition
“Perform Live Acquisition, Signal Processing, and Generation” on page 18-128

“Perform Spectral Analysis on Live Data” on page 18-130

See Also

More About
• “Analog Devices ADALM1000 Examples” on page B-8
• “Digilent Analog Discovery Hardware Examples” on page B-9
• “Measurement Computing Hardware Examples” on page B-10
• “Windows Sound Card Examples” on page B-13

B National Instruments Hardware Examples

B-12

Windows Sound Card Examples
“Acquire Continuous Audio Data” on page 18-81

“Generate Audio Signals” on page 18-84

“Generating Multichannel Audio” on page 18-86

“Create an App for Analog Triggered Data Acquisition by Using Stateflow Charts” on page 18-151

See Also

More About
• “Analog Devices ADALM1000 Examples” on page B-8
• “Digilent Analog Discovery Hardware Examples” on page B-9
• “Measurement Computing Hardware Examples” on page B-10
• “National Instruments Hardware Examples” on page B-11

 Windows Sound Card Examples

B-13

Data Acquisition Toolbox Examples

• “Getting Started with NI Devices” on page 18-3
• “Getting Started with MCC Devices” on page 18-7
• “Discover NI Devices” on page 18-10
• “Discover MCC Devices” on page 18-12
• “Acquire Data Using NI Devices” on page 18-14
• “Acquire Continuous and Background Data Using NI Devices” on page 18-18
• “Acquire Data from Multiple Channels using an MCC Device” on page 18-22
• “Acquire Data From an Accelerometer” on page 18-25
• “Measure Strain Using an Analog Bridge Sensor” on page 18-27
• “Acquire Temperature Data From a Thermocouple” on page 18-30
• “Acquire Temperature Data From an RTD” on page 18-32
• “Acquire and Analyze Sound Pressure Data From an IEPE Microphone” on page 18-35
• “Acquire and Analyze Noisy Clock Signals” on page 18-39
• “Generate Voltage Signals Using NI Devices” on page 18-49
• “Generate Signals on NI Devices That Output Current” on page 18-52
• “Generate Continuous and Background Signals Using NI Devices” on page 18-55
• “Acquire Data and Generate Signals at the Same Time” on page 18-58
• “Log Analog Input Data to a File Using NI Devices” on page 18-62
• “Getting Started Acquiring Data with Digilent Analog Discovery” on page 18-66
• “Getting Started Generating Data with Digilent Analog Discovery” on page 18-69
• “Acquiring and Generating Data at the Same Time with Digilent Analog Discovery” on page 18-71
• “Generate Standard Periodic Waveforms Using Digilent Analog Discovery” on page 18-74
• “Generate Arbitrary Periodic Waveforms Using Digilent Analog Discovery” on page 18-77
• “Acquire Continuous Audio Data” on page 18-81
• “Generate Audio Signals” on page 18-84
• “Generating Multichannel Audio” on page 18-86
• “Capture Data with Software-Analog Triggering” on page 18-90
• “Count Pulses on a Digital Signal Using NI Devices” on page 18-99
• “Measure Frequency Using NI Devices” on page 18-102
• “Measure Pulse Width Using NI Devices” on page 18-104
• “Generate Pulse Width Modulated Signals Using NI Devices” on page 18-106
• “Measure Angular Position with an Incremental Rotary Encoder” on page 18-108
• “Control Stepper Motor Using Digital Outputs” on page 18-113
• “Communicate with I2C Devices and Analyze Bus Signals Using Digital IO” on page 18-116
• “Synchronize NI PCI Devices Using RTSI” on page 18-123

18

• “Start a Multi-Trigger Acquisition on an External Event” on page 18-126
• “Perform Live Acquisition, Signal Processing, and Generation” on page 18-128
• “Perform Spectral Analysis on Live Data” on page 18-130
• “Acquire Data from Two Devices at Different Rates” on page 18-134
• “Characterize an LED with ADALM1000” on page 18-137
• “Estimate the Transfer Function of a Circuit with ADALM1000” on page 18-141
• “Create an App for Analog Triggered Data Acquisition” on page 18-148
• “Create an App for Analog Triggered Data Acquisition by Using Stateflow Charts” on page 18-151
• “Create an App for Live Data Acquisition” on page 18-155
• “Acquire Data Using NI FieldDAQ Device” on page 18-157
• “Create an Echometer Using Audio Measurements” on page 18-160

18 Data Acquisition Toolbox Examples

18-2

Getting Started with NI Devices
This example shows how to get started with National Instruments devices from the command line.

Discover Available Devices

Discover devices connected to your system using daqlist. To learn more about an individual device,
access the entry in the device table.

d = daqlist;
d(1, :)

ans =

 1×5 table

 VendorID DeviceID Description Model DeviceInfo
 ________ ___________ ______________________________ _________ _____________________________

 "ni" "cDAQ1Mod1" "National Instruments NI 9205" "NI 9205" [1×1 daq.ni.CompactDAQModule]

d{1, "DeviceInfo"}

ans =

ni: National Instruments NI 9205 (Device ID: 'cDAQ1Mod1')
 Analog input supports:
 4 ranges supported
 Rates from 0.6 to 250000.0 scans/sec
 32 channels ('ai0' - 'ai31')
 'Voltage' measurement type

This module is in slot 1 of the 'cDAQ-9178' chassis with the name 'cDAQ1'.

Create a DataAcquisition

The daq command creates a DataAcquisition object. The DataAcquisition contains information
describing hardware, scan rate, and other properties associated with the acquisition.

dq = daq("ni")

dq =

DataAcquisition using National Instruments hardware:

 Running: 0
 Rate: 1000
 NumScansAvailable: 0
 NumScansAcquired: 0
 NumScansQueued: 0
 NumScansOutputByHardware: 0
 RateLimit: []

 Getting Started with NI Devices

18-3

Show channels
Show properties and methods

Add an Analog Input Channel

The addinput command attaches an input channel to the DataAcquisition.

ch = addinput(dq,"cDAQ1Mod1", "ai0","Voltage")

ch =

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ___________ _______ ________________ __________________ _______________

 1 "ai" "cDAQ1Mod1" "ai0" "Voltage (Diff)" "-10 to +10 Volts" "cDAQ1Mod1_ai0"

Acquire Timestamped Data

The read command starts the acquisition and returns the results as a timetable.

data = read(dq, seconds(1));

Plot Data

plot(data.Time, data.cDAQ1Mod1_ai0);
ylabel("Voltage (V)");

18 Data Acquisition Toolbox Examples

18-4

Change Default Properties of the Acquisition

By default, run at a scan rate of 1000 scans per second. To acquire at a higher rate, change the Rate
property.

dq.Rate = 5000;

Run the acquisition and plot the acquired data:

[data, startTime] = read(dq, seconds(2));
plot(data.Time, data.cDAQ1Mod1_ai0);
ylabel("Voltage (V)");

 Getting Started with NI Devices

18-5

18 Data Acquisition Toolbox Examples

18-6

Getting Started with MCC Devices
This example shows how to get started with MCC devices from the command line.

Discover Available Devices

Discover devices connected to your system using daqlist. To learn more about an individual device,
access the entry in the device table.

d = daqlist("mcc");
d(1, :)

ans =

 1×4 table

 DeviceID Description Model DeviceInfo
 ________ ___ _________________ ________________________

 "Board0" "Measurement Computing Corp. USB-1608FS-Plus" "USB-1608FS-Plus" [1×1 daq.sdk.DeviceInfo]

Create a DataAcquisition

The daq function creates a DataAcquisition object. The DataAcquisition contains information
describing hardware, scan rate, and other properties associated with the acquisition.

dq = daq("mcc")

dq =

DataAcquisition using Measurement Computing Corp. hardware:

 Running: 0
 Rate: 1000
 NumScansAvailable: 0
 NumScansAcquired: 0
 NumScansQueued: 0
 NumScansOutputByHardware: 0
 RateLimit: []

Show channels
Show properties and methods

Add an Analog Input Channel

The addinput function attaches an input channel to the DataAcquisition. You can add more than one
channel to a DataAcquisition. This example uses one input channel, Ai0, which is connected to a
function generator channel outputting a 10 Hz sine wave.

addinput(dq, "Board0", "Ai0", "Voltage");
dq

dq =

 Getting Started with MCC Devices

18-7

DataAcquisition using Measurement Computing Corp. hardware:

 Running: 0
 Rate: 1000
 NumScansAvailable: 0
 NumScansAcquired: 0
 NumScansQueued: 0
 NumScansOutputByHardware: 0
 RateLimit: [0.1000 100000]

Show channels
Show properties and methods

Acquire Timestamped Data

The read function starts the acquisition and returns the results as a timetable.

[data, startTime] = read(dq, seconds(1));

Plot Acquired Data

plot(data.Time, data.Board0_Ai0);
xlabel("Time (s)");
ylabel("Voltage (V)");

18 Data Acquisition Toolbox Examples

18-8

Change Default Properties of the Acquisition

By default, acquisitions run for one second at 1000 scans per second. To acquire at a different rate,
change the Rate property.

dq.Rate = 5000;

Run the acquisition and plot the acquired data:

[data, startTime] = read(dq, seconds(1));
plot(data.Time, data.Board0_Ai0);
xlabel("Time (s)");
ylabel("Voltage (V)");

 Getting Started with MCC Devices

18-9

Discover NI Devices
This example shows how to discover National Instruments devices visible to MATLAB® and get
information about channel and measurement types available in those devices.

Display a List of Available Devices

Use daqlist to display a list of devices available to your machine and MATLAB.

d = daqlist("ni")

d =

 12×4 table

 DeviceID Description Model DeviceInfo
 ___________ __________________________________ _____________ ____________________

 "cDAQ1Mod1" "National Instruments NI 9205" "NI 9205" [1×1 daq.DeviceInfo]
 "cDAQ1Mod2" "National Instruments NI 9263" "NI 9263" [1×1 daq.DeviceInfo]
 "cDAQ1Mod3" "National Instruments NI 9234" "NI 9234" [1×1 daq.DeviceInfo]
 "cDAQ1Mod4" "National Instruments NI 9201" "NI 9201" [1×1 daq.DeviceInfo]
 "cDAQ1Mod5" "National Instruments NI 9402" "NI 9402" [1×1 daq.DeviceInfo]
 "cDAQ1Mod6" "National Instruments NI 9213" "NI 9213" [1×1 daq.DeviceInfo]
 "cDAQ1Mod7" "National Instruments NI 9219" "NI 9219" [1×1 daq.DeviceInfo]
 "cDAQ1Mod8" "National Instruments NI 9265" "NI 9265" [1×1 daq.DeviceInfo]
 "Dev1" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]
 "Dev2" "National Instruments NI ELVIS II" "NI ELVIS II" [1×1 daq.DeviceInfo]
 "Dev3" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]
 "Dev4" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]

Get Details About a Device

The daqlist command shows you the overview of devices available. To obtain more information
about a particular device, view the "DeviceInfo" table cell for it.

deviceInfo = d{1, "DeviceInfo"}

deviceInfo =

ni: National Instruments NI 9205 (Device ID: 'cDAQ1Mod1')
 Analog input supports:
 4 ranges supported
 Rates from 0.6 to 250000.0 scans/sec
 32 channels ('ai0' - 'ai31')
 'Voltage' measurement type

This module is in slot 1 of the 'cDAQ-9178' chassis with the name 'cDAQ1'.

18 Data Acquisition Toolbox Examples

18-10

Dynamic Hardware Discovery

When the hardware configuration changes (for example, a new CompactDAQ module is plugged into
the chassis), use daqreset followed by daqlist to observe the changes.

 Discover NI Devices

18-11

Discover MCC Devices
This example shows how to discover devices visible to MATLAB and get information about channel
and measurement types available in those devices.

Display a List of Available Vendors

Discover available vendors for your system using daqvendorlist.

v = daqvendorlist

v =

 1×4 table

 ID FullName AdaptorVersion DriverVersion
 _____ _______________________________ ______________ _____________

 "mcc" {'Measurement Computing Corp.'} "4.1 (R2020a)" "6.60.0"

Display a List of Available Devices

Discover devices connected to your system using daqlist.

d = daqlist("mcc")

d =

 1×4 table

 DeviceID Description Model DeviceInfo
 ________ ___ _________________ ________________________

 "Board0" "Measurement Computing Corp. USB-1608FS-Plus" "USB-1608FS-Plus" [1×1 daq.sdk.DeviceInfo]

Get Details About a Device

The daqlist command shows you the overview of devices available. You can find additional device
details by reviewing the DeviceInfo field of the table.

deviceInfo = d{1, "DeviceInfo"}

deviceInfo =

mcc: Measurement Computing Corp. USB-1608FS-Plus (Device ID: 'Board0')
 Analog input supports:
 4 ranges supported
 Rates from 0.1 to 100000.0 scans/sec
 8 channels ('Ai0' - 'Ai7')
 'Voltage' measurement type

18 Data Acquisition Toolbox Examples

18-12

Display Subsystems of a Device

Use the Subsystems property to find all the subsystem information. To display all details about the
first subsystem including the channel, type:

deviceInfo.Subsystems

ans =

Analog input supports:
 4 ranges supported
 Rates from 0.1 to 100000.0 scans/sec
 8 channels ('Ai0' - 'Ai7')
 'Voltage' measurement type

Dynamic Hardware Discovery

When you change your hardware configuration (for example, plug in a new USB device), first detect
the device in InstaCal. Then, use the daqreset command to refresh Data Acquisition toolbox before
using daqlist to discover the changes.

 Discover MCC Devices

18-13

Acquire Data Using NI Devices
This example shows how to acquire data from a National Instruments device.

Discover Analog Input Devices

To discover a device that supports input measurements, access the device in the table returned by the
daqlist command. This example uses an NI 9201 module in a National Instruments® CompactDAQ
Chassis NI cDAQ-9178. This is an 8 channel analog input device and is module 4 in the chassis.

d = daqlist("ni")

d =

 12×4 table

 DeviceID Description Model DeviceInfo
 ___________ __________________________________ _____________ ____________________

 "cDAQ1Mod1" "National Instruments NI 9205" "NI 9205" [1×1 daq.DeviceInfo]
 "cDAQ1Mod2" "National Instruments NI 9263" "NI 9263" [1×1 daq.DeviceInfo]
 "cDAQ1Mod3" "National Instruments NI 9234" "NI 9234" [1×1 daq.DeviceInfo]
 "cDAQ1Mod4" "National Instruments NI 9201" "NI 9201" [1×1 daq.DeviceInfo]
 "cDAQ1Mod5" "National Instruments NI 9402" "NI 9402" [1×1 daq.DeviceInfo]
 "cDAQ1Mod6" "National Instruments NI 9213" "NI 9213" [1×1 daq.DeviceInfo]
 "cDAQ1Mod7" "National Instruments NI 9219" "NI 9219" [1×1 daq.DeviceInfo]
 "cDAQ1Mod8" "National Instruments NI 9265" "NI 9265" [1×1 daq.DeviceInfo]
 "Dev1" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]
 "Dev2" "National Instruments NI ELVIS II" "NI ELVIS II" [1×1 daq.DeviceInfo]
 "Dev3" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]
 "Dev4" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]

deviceInfo = d{4, "DeviceInfo"}

deviceInfo =

ni: National Instruments NI 9201 (Device ID: 'cDAQ1Mod4')
 Analog input supports:
 -10 to +10 Volts range
 Rates from 0.6 to 500000.0 scans/sec
 8 channels ('ai0' - 'ai7')
 'Voltage' measurement type

This module is in slot 4 of the 'cDAQ-9178' chassis with the name 'cDAQ1'.

Create a DataAcquisition and Add Analog Input Channels

Create a DataAcquisition, set the Rate property (the default is 1000 scans per second), and add
analog input channels using addinput.

dq = daq("ni");
dq.Rate = 8000;

18 Data Acquisition Toolbox Examples

18-14

addinput(dq, "cDAQ1Mod4", "ai0", "Voltage");
addinput(dq, "cDAQ1Mod4", "ai1", "Voltage");

Acquire a Single Scan as a Table

Use read to acquire a single scan. The result is a table with two data columns because two input
channels are used to acquire the scan.

tabledata = read(dq)

tabledata =

 1×2 timetable

 Time cDAQ1Mod4_ai0 cDAQ1Mod4_ai1
 _____ _____________ _____________

 0 sec 0.00081472 0.00090579

Acquire a Single Scan as a Matrix

Use read to acquire a single scan. The result is an array of size 1x2 because two input channels are
used to acquire the scan.

matrixdata = read(dq, "OutputFormat", "Matrix")

matrixdata =

 1.0e-03 *

 0.1270 0.9134

Acquire Data For a Specified Duration

Use read to acquire multiple scans, blocking MATLAB execution until all the data requested is
acquired. The acquired data is returned as a timetable with width equal to the number of channels
and height equal to the number of scans.

% Acquire data for one second at 8000 scans per second.
data = read(dq, seconds(1));

Plot the Acquired Data

plot(data.Time, data.Variables);
ylabel("Voltage (V)")

 Acquire Data Using NI Devices

18-15

Acquire Specified Number of Scans

data = read(dq, 2*dq.Rate);
plot(data.Time, data.Variables);
ylabel("Voltage (V)")

18 Data Acquisition Toolbox Examples

18-16

 Acquire Data Using NI Devices

18-17

Acquire Continuous and Background Data Using NI Devices
This example shows how to acquire analog input data using non-blocking commands. This allows you
to continue working in the MATLAB command window during the acquisition. This is called
background acquisition. Use foreground acquisition to cause MATLAB to wait for the entire
acquisition to complete before you can execute your next command.

Create and Configure the DataAcquisition Object

Use daq to create a DataAcquisition object and addinput to add an input channel to it. This example
uses an NI 9205 module in National Instruments® CompactDAQ Chassis NI cDAQ-9178. This is
module 1 in the chassis.

dq = daq("ni");
addinput(dq, "cDAQ1Mod1", "ai0", "Voltage");
dq.Rate = 2000;

Plot Live Data as It Is Acquired

During a background acquisition, the DataAcquisition can handle acquired data in a specified way
using the ScansAvailableFcn property.

dq.ScansAvailableFcn = @(src,evt) plotDataAvailable(src, evt);

Set ScansAvailableFcnCount

By default, the ScansAvailableFcn is called 10 times per second. Modify the
ScansAvailableFcnCount property to decrease the call frequency. The ScansAvailableFcn will be
called when the number of points accumulated exceeds this value. Set the ScansAvailableFcnCount to
the rate, which results in one call to ScansAvailableFcn per second.

dq.ScansAvailableFcnCount = 2000;

Start the Background Acquisition

Use start to start the background acquisition.

start(dq, "Duration", seconds(5))

There are no other calculations to perform and the acquisition is set to run for the entire five seconds.
Use pause in a loop to monitor the number of scans acquired for the duration of the acquisition.

while dq.Running
 pause(0.5)
 fprintf("While loop: Scans acquired = %d\n", dq.NumScansAcquired)
end

fprintf("Acquisition stopped with %d scans acquired\n", dq.NumScansAcquired);

While loop: Scans acquired = 1000

18 Data Acquisition Toolbox Examples

18-18

Capture a Unique Event in Incoming Data

Acquire continuously until a specific condition is met. In this example, acquire until the signal equals
or exceeds 1 V.

dq.ScansAvailableFcn = @(src,evt) stopWhenEqualsOrExceedsOneV(src, evt);

Configure the DataAcquisition to acquire continuously. The listener detects the 1V event and calls
stop.

start(dq, "continuous");

Use pause in a loop to monitor the number of scans acquired for the duration of the acquisition. Note
that the status string displayed by the ScansAvailableFcn may appear before the last status string
displayed by the while loop.

while dq.Running
 pause(0.5)
 fprintf("While loop: Scans acquired = %d\n", dq.NumScansAcquired)
end

fprintf("Acquisition has terminated with %d scans acquired\n", dq.NumScansAcquired);

dq.ScansAvailableFcn = [];

While loop: Scans acquired = 1000
Detected voltage exceeds 1V: stopping acquisition

 Acquire Continuous and Background Data Using NI Devices

18-19

While loop: Scans acquired = 2000
Acquisition has terminated with 2000 scans acquired

function plotDataAvailable(src, ~)
 [data, timestamps, ~] = read(src, src.ScansAvailableFcnCount, "OutputFormat", "Matrix");
 plot(timestamps, data);
end

function stopWhenEqualsOrExceedsOneV(src, ~)
 [data, timestamps, ~] = read(src, src.ScansAvailableFcnCount, "OutputFormat", "Matrix");
 if any(data >= 1.0)
 disp('Detected voltage exceeds 1V: stopping acquisition')
 % stop continuous acquisitions explicitly
 src.stop()
 plot(timestamps, data)
 else
 disp('Continuing to acquire data')
 end
end

While loop: Scans acquired = 2200
While loop: Scans acquired = 3200
While loop: Scans acquired = 4200
While loop: Scans acquired = 5200
While loop: Scans acquired = 6200
While loop: Scans acquired = 7200
While loop: Scans acquired = 8200
While loop: Scans acquired = 9200

18 Data Acquisition Toolbox Examples

18-20

While loop: Scans acquired = 10000
Acquisition stopped with 10000 scans acquired

 Acquire Continuous and Background Data Using NI Devices

18-21

Acquire Data from Multiple Channels using an MCC Device
This example shows how to acquire data from multiple analog input channels with an MCC device.

Hardware Setup

This example uses a Measurement Computing USB-1608FS-Plus device to log data from analog input
channels 0 and 9, which are connected to the outputs of a function generator.

Display a List of Available Devices

Discover devices connected to your system using daqlist.

d = daqlist("mcc")

d =

 1×4 table

 DeviceID Description Model DeviceInfo
 ________ ___ _________________ ________________________

 "Board0" "Measurement Computing Corp. USB-1608FS-Plus" "USB-1608FS-Plus" [1×1 daq.sdk.DeviceInfo]

Get Details About a Device

The daqlist function shows you the overview of devices available. You can find additional device
details by reviewing the DeviceInfo field of the table.

deviceInfo = d{1, "DeviceInfo"}

deviceInfo =

mcc: Measurement Computing Corp. USB-1608FS-Plus (Device ID: 'Board0')
 Analog input supports:
 4 ranges supported
 Rates from 0.1 to 100000.0 scans/sec
 8 channels ('Ai0' - 'Ai7')
 'Voltage' measurement type

Create a DataAcquisition and Add Input Channels

The daq function creates a DataAcquisition object. The DataAcquisition contains information
describing hardware, scan rate, and other properties associated with the acquisition.

dq = daq("mcc")

% The |addinput| function adds an analog input channel to
% the DataAcquisition. You can add more than one channel to a
% DataAcquisition.
ch1 = addinput(dq, "Board0", 0, "Voltage");
ch2 = addinput(dq, "Board0", 1, "Voltage");

18 Data Acquisition Toolbox Examples

18-22

dq =

DataAcquisition using Measurement Computing Corp. hardware:

 Running: 0
 Rate: 1000
 NumScansAvailable: 0
 NumScansAcquired: 0
 NumScansQueued: 0
 NumScansOutputByHardware: 0
 RateLimit: []

Show channels
Show properties and methods

Acquire Timestamped Data

The read function starts the acquisition and returns the results as a timetable.

data = read(dq, seconds(1));

Plot Acquired Data

plot(data.Time, data.Board0_Ai0, data.Time, data.Board0_Ai1);
xlabel('Time (s)');
ylabel('Voltage (V)');

 Acquire Data from Multiple Channels using an MCC Device

18-23

Change Default Properties of the Acquisition

By default, acquisitions run for one second at 1000 scans per second. To acquire at a different rate,
change the Rate property.

dq.Rate = 10000;
[data, startTime] = read(dq, seconds(1));
plot(data.Time, data.Board0_Ai0, data.Time, data.Board0_Ai1);
xlabel('Time (s)');
ylabel('Voltage (V)');

18 Data Acquisition Toolbox Examples

18-24

Acquire Data From an Accelerometer
This example shows how to acquire and display data from an accelerometer attached to a vehicle
driven under uneven road conditions.

Discover Devices That Support Accelerometers

To discover a device that supports accelerometers, access the device in the table returned by the
daqlist command. This example uses National Instruments® CompactDAQ Chassis NI cDAQ-9178
and module NI 9234 with ID cDAQ1Mod3.

d = daqlist("ni")

d =

 12×4 table

 DeviceID Description Model DeviceInfo
 ___________ __________________________________ _____________ ____________________

 "cDAQ1Mod1" "National Instruments NI 9205" "NI 9205" [1×1 daq.DeviceInfo]
 "cDAQ1Mod2" "National Instruments NI 9263" "NI 9263" [1×1 daq.DeviceInfo]
 "cDAQ1Mod3" "National Instruments NI 9234" "NI 9234" [1×1 daq.DeviceInfo]
 "cDAQ1Mod4" "National Instruments NI 9201" "NI 9201" [1×1 daq.DeviceInfo]
 "cDAQ1Mod5" "National Instruments NI 9402" "NI 9402" [1×1 daq.DeviceInfo]
 "cDAQ1Mod6" "National Instruments NI 9213" "NI 9213" [1×1 daq.DeviceInfo]
 "cDAQ1Mod7" "National Instruments NI 9219" "NI 9219" [1×1 daq.DeviceInfo]
 "cDAQ1Mod8" "National Instruments NI 9265" "NI 9265" [1×1 daq.DeviceInfo]
 "Dev1" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]
 "Dev2" "National Instruments NI ELVIS II" "NI ELVIS II" [1×1 daq.DeviceInfo]
 "Dev3" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]
 "Dev4" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]

deviceInfo = d{3, "DeviceInfo"}

deviceInfo =

ni: National Instruments NI 9234 (Device ID: 'cDAQ1Mod3')
 Analog input supports:
 -5.0 to +5.0 Volts range
 Rates from 1000.0 to 51200.0 scans/sec
 4 channels ('ai0','ai1','ai2','ai3')
 'Voltage','Accelerometer','Microphone','IEPE' measurement types

This module is in slot 3 of the 'cDAQ-9178' chassis with the name 'cDAQ1'.

Add an Accelerometer Channel

Create a DataAcquisition, and add an analog input channel with Accelerometer measurement type.

dq = daq("ni");
ch = addinput(dq, "cDAQ1Mod3", "ai0", "Accelerometer");

 Acquire Data From an Accelerometer

18-25

Set Session Rate and Duration

Change the acquisition scan rate to 4000 scans per second

dq.Rate = 4000;

Set Sensitivity

You must set the Sensitivity value to the value specified in the accelerometer's data sheet. This
example uses a ceramic shear accelerometer model 352C22 from PCB Piezotronics with 9.22 mV per
gravity.

ch.Sensitivity = 0.00922;
ch

ch =

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ___________ _______ ______________________ ____________________ _______________

 1 "ai" "cDAQ1Mod3" "ai0" "Accelerometer (Diff)" "-5.0 to +5.0 Volts" "cDAQ1Mod3_ai0"

Acquire and Plot Data

Use the read command to acquire data for 30 seconds.

data = read(dq, seconds(30));
plot(data.Time, data.cDAQ1Mod3_ai0);
ylabel("Acceleration (Gravities)");

18 Data Acquisition Toolbox Examples

18-26

Measure Strain Using an Analog Bridge Sensor
This example shows how to acquire bridge circuit voltage ratio data using a CompactDAQ module,
then compute and plot strain values. This example does not apply to USB devices such as the NI
USB-9219.

Discover Devices that Support Bridge Sensor Measurements

To discover a device that supports bridge sensor measurements, access the device in the array
returned by daqlist command. For this example use National Instruments® CompactDAQ Chassis
NI cDAQ-9178 and module NI 9219 with ID cDAQ1Mod7.

d = daqlist("ni")

d =

 12×4 table

 DeviceID Description Model DeviceInfo
 ___________ __________________________________ _____________ ____________________

 "cDAQ1Mod1" "National Instruments NI 9205" "NI 9205" [1×1 daq.DeviceInfo]
 "cDAQ1Mod2" "National Instruments NI 9263" "NI 9263" [1×1 daq.DeviceInfo]
 "cDAQ1Mod3" "National Instruments NI 9234" "NI 9234" [1×1 daq.DeviceInfo]
 "cDAQ1Mod4" "National Instruments NI 9201" "NI 9201" [1×1 daq.DeviceInfo]
 "cDAQ1Mod5" "National Instruments NI 9402" "NI 9402" [1×1 daq.DeviceInfo]
 "cDAQ1Mod6" "National Instruments NI 9213" "NI 9213" [1×1 daq.DeviceInfo]
 "cDAQ1Mod7" "National Instruments NI 9219" "NI 9219" [1×1 daq.DeviceInfo]
 "cDAQ1Mod8" "National Instruments NI 9265" "NI 9265" [1×1 daq.DeviceInfo]
 "Dev1" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]
 "Dev2" "National Instruments NI ELVIS II" "NI ELVIS II" [1×1 daq.DeviceInfo]
 "Dev3" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]
 "Dev4" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]

deviceInfo = d{7, "DeviceInfo"}

deviceInfo =

ni: National Instruments NI 9219 (Device ID: 'cDAQ1Mod7')
 Analog input supports:
 9 ranges supported
 Rates from 0.1 to 100.0 scans/sec
 4 channels ('ai0','ai1','ai2','ai3')
 'Voltage','Current','Thermocouple','RTD','Bridge' measurement types

This module is in slot 7 of the 'cDAQ-9178' chassis with the name 'cDAQ1'.

Create an Analog Input Channel

Create a DataAcquisition and add an analog input channel with the Bridge measurement type. There
are two strain gauges connected to the NI 9219 in half bridge configuration.

 Measure Strain Using an Analog Bridge Sensor

18-27

dq = daq("ni");
dq.Rate = 10;
ch = addinput(dq, "cDAQ1Mod7", "ai0", "Bridge");

Set Channel Properties

You must set the bridge mode according to the bridge circuit configuration and the nominal
resistance to the value specified by the strain gauge datasheet. In this example, the strain gauges
used are the SGD-3/350-LY13 linear strain gauges from Omega®, with a nominal resistance of 350
ohms, and the bridge is configured as a half-bridge.

ch.BridgeMode = "Half";
ch.NominalBridgeResistance = 350;

Set ADCTimingMode

By default, the ADC timing mode ADCTimingMode of the channel is set to 'HighResolution'. Set
the ADCTimingMode to 'HighSpeed'.

ch.ADCTimingMode = "HighSpeed";

Acquire Data

Use read to acquire 10 seconds of data.

data = read(dq, seconds(10));

Calculate Strain from Voltage Ratio

The acquired data is the ratio of measured voltage to excitation voltage.

This data is used to compute strain values using a conversion formula (as determined by your bridge
configuration).

For half bridge configuration, use

strain = -2*Vr/GF

where GF is gauge factor provided in the sensor data sheet and Vr is the voltage ratio output as
measured by your bridge channel.

Assume negligible lead wire resistance in this case. For the strain gauge used in this example, GF =
2.13.

GF = 2.13;
strain = -2*data.cDAQ1Mod7_ai0/GF;
plot(data.Time, strain);
xlabel('Time (s)');
ylabel('Strain');

18 Data Acquisition Toolbox Examples

18-28

 Measure Strain Using an Analog Bridge Sensor

18-29

Acquire Temperature Data From a Thermocouple
This example shows how to read data from NI devices that support thermocouple measurements.

Discover Devices That Support Thermocouples

To discover a device that supports thermocouple measurements, access the device in the table
returned by the daqlist command. This example uses an NI 9213 device. This is a 16 channel
thermocouple module and is module 6 in the chassis.

d = daqlist("ni")

d =

 12×4 table

 DeviceID Description Model DeviceInfo
 ___________ __________________________________ _____________ ____________________

 "cDAQ1Mod1" "National Instruments NI 9205" "NI 9205" [1×1 daq.DeviceInfo]
 "cDAQ1Mod2" "National Instruments NI 9263" "NI 9263" [1×1 daq.DeviceInfo]
 "cDAQ1Mod3" "National Instruments NI 9234" "NI 9234" [1×1 daq.DeviceInfo]
 "cDAQ1Mod4" "National Instruments NI 9201" "NI 9201" [1×1 daq.DeviceInfo]
 "cDAQ1Mod5" "National Instruments NI 9402" "NI 9402" [1×1 daq.DeviceInfo]
 "cDAQ1Mod6" "National Instruments NI 9213" "NI 9213" [1×1 daq.DeviceInfo]
 "cDAQ1Mod7" "National Instruments NI 9219" "NI 9219" [1×1 daq.DeviceInfo]
 "cDAQ1Mod8" "National Instruments NI 9265" "NI 9265" [1×1 daq.DeviceInfo]
 "Dev1" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]
 "Dev2" "National Instruments NI ELVIS II" "NI ELVIS II" [1×1 daq.DeviceInfo]
 "Dev3" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]
 "Dev4" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]

deviceInfo = d{6, "DeviceInfo"}

deviceInfo =

ni: National Instruments NI 9213 (Device ID: 'cDAQ1Mod6')
 Analog input supports:
 -0.078 to +0.078 Volts range
 Rates from 0.1 to 1351.4 scans/sec
 16 channels ('ai0' - 'ai15')
 'Voltage','Thermocouple' measurement types

This module is in slot 6 of the 'cDAQ-9178' chassis with the name 'cDAQ1'.

Add a Thermocouple Channel

Create a DataAcquisition, change its scan Rate to four scans per second, and add an analog input
channel with Thermocouple measurement type.

dq = daq("ni");
dq.Rate = 4;
ch = addinput(dq, "cDAQ1Mod6", "ai0", "Thermocouple");

18 Data Acquisition Toolbox Examples

18-30

Configure Channel Properties

Set the thermocouple type to K and units to Kelvin (the thermocouple type should match the sensor
configuration).

ch.ThermocoupleType = 'K';
ch.Units = 'Kelvin';
ch

ch =

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ___________ _______ ________________ _____________________ _______________

 1 "ai" "cDAQ1Mod6" "ai0" "Voltage (Diff)" "+73 to +1523 Kelvin" "cDAQ1Mod6_ai0"

Acquire and Plot Data

Use the read command to acquire data.

data = read(dq, seconds(1));
plot(data.Time, data.cDAQ1Mod6_ai0);
ylabel('Temperature (K)');

 Acquire Temperature Data From a Thermocouple

18-31

Acquire Temperature Data From an RTD
This example shows how to acquire temperature data from a Resistive temperature device (RTD) and
display the readings. The device is attached inside a PC case to monitor the internal temperature
changes.

Discover Devices That Support RTDs

To discover a device that supports bridge sensor measurements, access the device in the table
returned by the daqlist command. This example uses an NI 9219 module in National Instruments®
CompactDAQ Chassis NI cDAQ-9178. This is a 24-Bit Universal Analog Input module and is module 7
in the chassis.

d = daqlist("ni")

d =

 12×4 table

 DeviceID Description Model DeviceInfo
 ___________ __________________________________ _____________ ____________________

 "cDAQ1Mod1" "National Instruments NI 9205" "NI 9205" [1×1 daq.DeviceInfo]
 "cDAQ1Mod2" "National Instruments NI 9263" "NI 9263" [1×1 daq.DeviceInfo]
 "cDAQ1Mod3" "National Instruments NI 9234" "NI 9234" [1×1 daq.DeviceInfo]
 "cDAQ1Mod4" "National Instruments NI 9201" "NI 9201" [1×1 daq.DeviceInfo]
 "cDAQ1Mod5" "National Instruments NI 9402" "NI 9402" [1×1 daq.DeviceInfo]
 "cDAQ1Mod6" "National Instruments NI 9213" "NI 9213" [1×1 daq.DeviceInfo]
 "cDAQ1Mod7" "National Instruments NI 9219" "NI 9219" [1×1 daq.DeviceInfo]
 "cDAQ1Mod8" "National Instruments NI 9265" "NI 9265" [1×1 daq.DeviceInfo]
 "Dev1" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]
 "Dev2" "National Instruments NI ELVIS II" "NI ELVIS II" [1×1 daq.DeviceInfo]
 "Dev3" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]
 "Dev4" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]

deviceInfo = d{7, "DeviceInfo"}

deviceInfo =

ni: National Instruments NI 9219 (Device ID: 'cDAQ1Mod7')
 Analog input supports:
 9 ranges supported
 Rates from 0.1 to 100.0 scans/sec
 4 channels ('ai0','ai1','ai2','ai3')
 'Voltage','Current','Thermocouple','RTD','Bridge' measurement types

This module is in slot 7 of the 'cDAQ-9178' chassis with the name 'cDAQ1'.

Add an RTD Channel

Create a DataAcquisition, and add an analog input channel with RTD measurement type.

18 Data Acquisition Toolbox Examples

18-32

dq = daq("ni");
dq.Rate = 30;
ch = addinput(dq, "cDAQ1Mod7", "ai3", "RTD");

Set Sensor Properties

Refer to the sensor data sheet and match the values accordingly. In this example, an SA1-RTD series
sensor from Omega® is used. Set units to "Fahrenheit", RTD type to "Pt3851", configure the RTD
circuit as "FourWire", and set the resistance to 100 ohms.

ch.Units = "Fahrenheit";
ch.RTDType = "Pt3851";
ch.RTDConfiguration = "FourWire";
ch.R0 = 100;

Set ADCTimingMode

By default, the ADC timing mode ADCTimingMode of the channel is set to "HighResolution". Set
the ADCTimingMode to "HighSpeed".

ch.ADCTimingMode = "HighSpeed";

Acquire and Plot Data

Use the read command to acquire data.

data = read(dq, seconds(1));
plot(data.Time, data.cDAQ1Mod7_ai3);
degreeSign = 176;
ylabel(sprintf("Temperature (%cF)", degreeSign));

 Acquire Temperature Data From an RTD

18-33

18 Data Acquisition Toolbox Examples

18-34

Acquire and Analyze Sound Pressure Data From an IEPE
Microphone

This example shows how to acquire and display sound pressure data from a PCB® IEPE array
microphone, Model 130E20. The sensor is recording sound pressure generated by a tuning fork at
Middle C (261.626 Hz) frequency.

Discover Devices That Support Microphones

To discover a device that supports microphone measurements, access the device in the table returned
by the daqlist command. For this example, the microphone is connected on channel 0 of National
Instruments® device NI 9234 on CompactDAQ Chassis NI cDAQ-9178 with ID cDAQ1Mod3.

d = daqlist("ni")

d =

 12×4 table

 DeviceID Description Model DeviceInfo
 ___________ __________________________________ _____________ ____________________

 "cDAQ1Mod1" "National Instruments NI 9205" "NI 9205" [1×1 daq.DeviceInfo]
 "cDAQ1Mod2" "National Instruments NI 9263" "NI 9263" [1×1 daq.DeviceInfo]
 "cDAQ1Mod3" "National Instruments NI 9234" "NI 9234" [1×1 daq.DeviceInfo]
 "cDAQ1Mod4" "National Instruments NI 9201" "NI 9201" [1×1 daq.DeviceInfo]
 "cDAQ1Mod5" "National Instruments NI 9402" "NI 9402" [1×1 daq.DeviceInfo]
 "cDAQ1Mod6" "National Instruments NI 9213" "NI 9213" [1×1 daq.DeviceInfo]
 "cDAQ1Mod7" "National Instruments NI 9219" "NI 9219" [1×1 daq.DeviceInfo]
 "cDAQ1Mod8" "National Instruments NI 9265" "NI 9265" [1×1 daq.DeviceInfo]
 "Dev1" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]
 "Dev2" "National Instruments NI ELVIS II" "NI ELVIS II" [1×1 daq.DeviceInfo]
 "Dev3" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]
 "Dev4" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]

deviceInfo = d{3, "DeviceInfo"}

deviceInfo =

ni: National Instruments NI 9234 (Device ID: 'cDAQ1Mod3')
 Analog input supports:
 -5.0 to +5.0 Volts range
 Rates from 1000.0 to 51200.0 scans/sec
 4 channels ('ai0','ai1','ai2','ai3')
 'Voltage','Accelerometer','Microphone','IEPE' measurement types

This module is in slot 3 of the 'cDAQ-9178' chassis with the name 'cDAQ1'.

Create a DataAcquisition and Add Microphone Channel

Create a DataAcquisition and add a channel with Microphone measurement type.

 Acquire and Analyze Sound Pressure Data From an IEPE Microphone

18-35

dq = daq("ni");
ch = addinput(dq, "cDAQ1Mod3", "ai0", "Microphone");

Set Sensor Properties

Set the microphone channel Sensitivity property to the value specified in the sensor's data sheet.
For this sensor, the Sensitivity value is 0.037 Volts/Pascal. Examine the channel properties to see
the changes in the device configuration.

ch.Sensitivity = 0.037;
ch

ch =

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ___________ _______ ___________________ ______________________ _______________

 1 "ai" "cDAQ1Mod3" "ai0" "Microphone (Diff)" "-200 to +200 Pascals" "cDAQ1Mod3_ai0"

Configure and Start Acquisition

Set the acquisition scan rate to 51200 scans per second, then use read to acquire four seconds of
data.

dq.Rate = 51200;
tt = read(dq, seconds(4));
t = tt.Time;
data = tt.cDAQ1Mod3_ai0;

Analyze Data

Use audioplayer to play back the acquired microphone signal

p = audioplayer(data, dq.Rate);
play(p);

Examine the Data in the Time Domain

plot(t, data);
ylabel('Sound Pressure (pascals)');

18 Data Acquisition Toolbox Examples

18-36

Examine the Data in the Frequency Domain

Use fft and the following parameters to calculate the single-sided amplitude spectrum of the
incoming data:

• Calculate the length of signal (number of samples or entries in the table)
• Calculate the nfft
• Calculate amplitude and frequency

len = height(tt);
nfft = 2^nextpow2(len);
y = fft(data,nfft)/len;
f = dq.Rate/2*linspace(0,1,nfft/2+1);
A = 2*abs(y(1:nfft/2+1));

Plot the Single-Sided Amplitude Spectrum

plot(f,A);
xlim([0 1000]);
xlabel('Frequency (Hz)');
ylabel('Amplitude');

 Acquire and Analyze Sound Pressure Data From an IEPE Microphone

18-37

The plot shows a spike at 261.626 Hz. This matches the frequency of the tuning fork.

18 Data Acquisition Toolbox Examples

18-38

Acquire and Analyze Noisy Clock Signals
This example shows how to acquire clock signals and analyze transitions, pulses, and compute
metrics including rise time, fall time, slew rate, overshoot, undershoot, pulse width, and duty cycle.
This example uses Data Acquisition Toolbox in conjunction with the Signal Processing Toolbox.

Use Data Acquisition Toolbox to configure the acquisition. Use the statistics and measurement
functions in Signal Processing Toolbox to analyze the data signal.

Create a DataAcquisition and Acquire a Clock Signal

Use daq to create a DataAcquisition and addinput to add a channel from the National Instruments®
NI-9205 with ID of 'cDAQ1Mod1'.

dq = daq("ni");
addinput(dq,"cDAQ1Mod1","ai0","Voltage");

By default the DataAcquisition is configured to run at 1000 scans/second.

Change the scan rate to 250000 scans/second.

dq.Rate = 250000;

Use read to acquire multiple scans for 2 ms.

[data, time] = read(dq, milliseconds(2), "OutputFormat", "Matrix");

Plot the acquired clock signal (note that it is overdamped).

plot(time, data)
xlabel('Time (s)')
ylabel('Voltage (V)')

 Acquire and Analyze Noisy Clock Signals

18-39

Estimate State Levels

Use statelevels with no output argument to visualize the state levels in a histogram.

statelevels(data)

ans =

 0.0138 5.1848

18 Data Acquisition Toolbox Examples

18-40

The computed histogram is divided into two equal sized regions between the first and last bin. The
mode of each region of the histogram is returned as an estimated state level value in the command
window.

Use optional input arguments to specify the number of histogram bins, histogram bounds, and the
state level estimation method.

Measure Rise Time, Fall Time, and Slew Rate

Use risetime with no output argument to visualize the rise time of positive edges.

risetime(data,time)

ans =

 1.0e-04 *

 0.5919
 0.8344
 0.7185
 0.8970
 0.6366

 Acquire and Analyze Noisy Clock Signals

18-41

The default reference levels for computing rise time and fall time are set at 10% and 90% of the
waveform amplitude.

Measure fall time by specifying custom reference and state levels.

falltime(data,time,'PercentReferenceLevels',[20 80],'StateLevels',[0 5])

ans =

 1.0e-04 *

 0.4294
 0.5727
 0.5032
 0.4762

18 Data Acquisition Toolbox Examples

18-42

Obtain measurements programmatically by calling functions with one or more output arguments. For
uniformly sampled data, you can provide a sample rate in place of the time vector. Use slewrate to
measure the slope of each positive or negative edge.

sr = slewrate(data(1:100), dq.Rate)

sr =

 7.0840e+04

Analyze Overshoot and Undershoot

Acquire a new underdamped clock signal.

[data, time] = read(dq, milliseconds(4), "OutputFormat", "Matrix");
plot(time, data)
xlabel('Time (s)')
ylabel('Voltage (V)')

 Acquire and Analyze Noisy Clock Signals

18-43

Underdamped clock signals exhibit overshoot. Overshoot is expressed as a percentage of the
difference between state levels. Overshoot can occur just after an edge, at the start of the post-
transition aberration region. This is called "postshoot" overshoot. Measure the overshoot using
overshoot.

overshoot(data(95:270),dq.Rate)
legend('Location','NorthEast')

ans =

 4.9451
 2.5399

18 Data Acquisition Toolbox Examples

18-44

Overshoot can also occur just before an edge, at the end of the pre-transition aberration region. This
is called "preshoot" overshoot.

Undershoot can occur in the pre-aberration and post-aberration regions and is expressed as a
percentage of the difference between the state levels. Measure the undershoot with optional input
arguments specifying the region to measure aberrations.

undershoot(data(95:270),dq.Rate,'Region','Postshoot')
legend('Location','NorthEast')

ans =

 3.8499
 4.9451

 Acquire and Analyze Noisy Clock Signals

18-45

Measure Pulse Width and Duty Cycle

Use pulsewidth with no output argument to visualize highlighted pulse widths.

pulsewidth(data, time, 'Polarity', 'Positive');

18 Data Acquisition Toolbox Examples

18-46

This displays pulses of positive polarity. Select negative polarity to see the widths of negative polarity
pulses.

Use dutycycle to compute the ratio of the pulse width to the pulse period for each positive-polarity
or negative-polarity pulse. Duty cycles are expressed as a percentage of the pulse period.

d = dutycycle(data,time,'Polarity','negative')

d =

 0.4979
 0.5000
 0.5000

Use pulseperiod to obtain the periods of each cycle of the waveform. Use this information to
compute other metrics such as the average frequency of the waveform or the total observed jitter.

pp = pulseperiod(data, time);

avgFreq = 1./mean(pp)
totalJitter = std(pp)

avgFreq =

 1.2500e+03

 Acquire and Analyze Noisy Clock Signals

18-47

totalJitter =

 1.9866e-06

18 Data Acquisition Toolbox Examples

18-48

Generate Voltage Signals Using NI Devices
This example shows how to generate data using a National Instruments device.

Discover Devices That Can Output Voltage

To discover a device that supports analog outputs, access the device in the table returned by the
daqlist command. This example uses an NI 9263 module in National Instruments® CompactDAQ
Chassis NI cDAQ-9178. This is module 2 in the chassis.

d = daqlist("ni")

d =

 12×4 table

 DeviceID Description Model DeviceInfo
 ___________ __________________________________ _____________ ____________________

 "cDAQ1Mod1" "National Instruments NI 9205" "NI 9205" [1×1 daq.DeviceInfo]
 "cDAQ1Mod2" "National Instruments NI 9263" "NI 9263" [1×1 daq.DeviceInfo]
 "cDAQ1Mod3" "National Instruments NI 9234" "NI 9234" [1×1 daq.DeviceInfo]
 "cDAQ1Mod4" "National Instruments NI 9201" "NI 9201" [1×1 daq.DeviceInfo]
 "cDAQ1Mod5" "National Instruments NI 9402" "NI 9402" [1×1 daq.DeviceInfo]
 "cDAQ1Mod6" "National Instruments NI 9213" "NI 9213" [1×1 daq.DeviceInfo]
 "cDAQ1Mod7" "National Instruments NI 9219" "NI 9219" [1×1 daq.DeviceInfo]
 "cDAQ1Mod8" "National Instruments NI 9265" "NI 9265" [1×1 daq.DeviceInfo]
 "Dev1" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]
 "Dev2" "National Instruments NI ELVIS II" "NI ELVIS II" [1×1 daq.DeviceInfo]
 "Dev3" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]
 "Dev4" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]

deviceInfo = d{2, "DeviceInfo"}

deviceInfo =

ni: National Instruments NI 9263 (Device ID: 'cDAQ1Mod2')
 Analog output supports:
 -10 to +10 Volts range
 Rates from 0.6 to 100000.0 scans/sec
 4 channels ('ao0','ao1','ao2','ao3')
 'Voltage' measurement type

This module is in slot 2 of the 'cDAQ-9178' chassis with the name 'cDAQ1'.

Create a DataAcquisition and Add Analog Output Channels

Create a DataAcquisition, set the generation scan rate by setting the Rate property (the default is
1000 scans per second), and add analog output channels using addoutput.

dq = daq("ni");
dq.Rate = 8000;

 Generate Voltage Signals Using NI Devices

18-49

addoutput(dq, "cDAQ1Mod2", "ao0", "Voltage");
addoutput(dq, "cDAQ1Mod2", "ao1", "Voltage");

Generate a Single Scan

Use write to generate a single scan (2 V on each channel). The output scan data is a 1-by-N matrix
where N corresponds to the number of output channels.

output = 2;
write(dq,[output output]);

Create and Plot the Output Data

Generate two output signals (a 1 Hz sine wave and a 1 Hz ramp) and plot them. The plot depicts the
data generated on both channels for a device that supports simultaneous sampling.

n = dq.Rate;
outputSignal1 = sin(linspace(0,2*pi,n)');
outputSignal2 = linspace(-1,1,n)';
outputSignal = [outputSignal1 outputSignal2];
plot(1:n, outputSignal);
ylabel("Voltage (V)");
legend("Analog Output 0", "Analog Output 1");

Write Data

Use write to generate the output waveforms.

18 Data Acquisition Toolbox Examples

18-50

write(dq, outputSignal)

 Generate Voltage Signals Using NI Devices

18-51

Generate Signals on NI Devices That Output Current
This example shows how to generate signals on an analog current output channel of an NI device.

Discover Devices That Can Output Current

To discover a device that outputs current, access the device in the table returned by the daqlist
command. This example uses an NI 9265 module in a National Instruments® CompactDAQ Chassis
NI cDAQ-9178. This is a 4-channel analog current output device and is module 8 in the chassis.

d = daqlist("ni")

d =

 12×4 table

 DeviceID Description Model DeviceInfo
 ___________ __________________________________ _____________ ____________________

 "cDAQ1Mod1" "National Instruments NI 9205" "NI 9205" [1×1 daq.DeviceInfo]
 "cDAQ1Mod2" "National Instruments NI 9263" "NI 9263" [1×1 daq.DeviceInfo]
 "cDAQ1Mod3" "National Instruments NI 9234" "NI 9234" [1×1 daq.DeviceInfo]
 "cDAQ1Mod4" "National Instruments NI 9201" "NI 9201" [1×1 daq.DeviceInfo]
 "cDAQ1Mod5" "National Instruments NI 9402" "NI 9402" [1×1 daq.DeviceInfo]
 "cDAQ1Mod6" "National Instruments NI 9213" "NI 9213" [1×1 daq.DeviceInfo]
 "cDAQ1Mod7" "National Instruments NI 9219" "NI 9219" [1×1 daq.DeviceInfo]
 "cDAQ1Mod8" "National Instruments NI 9265" "NI 9265" [1×1 daq.DeviceInfo]
 "Dev1" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]
 "Dev2" "National Instruments NI ELVIS II" "NI ELVIS II" [1×1 daq.DeviceInfo]
 "Dev3" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]
 "Dev4" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]

deviceInfo = d{8, "DeviceInfo"}

deviceInfo =

ni: National Instruments NI 9265 (Device ID: 'cDAQ1Mod8')
 Analog output supports:
 0 to +0.020 A range
 Rates from 0.6 to 100000.0 scans/sec
 4 channels ('ao0','ao1','ao2','ao3')
 'Current' measurement type

This module is in slot 8 of the 'cDAQ-9178' chassis with the name 'cDAQ1'.

Add an Output Current Channel

Create a DataAcquisition, and add two analog output channels.

dq = daq("ni");
dq.Rate = 100;
ch1 = addoutput(dq, "cDAQ1Mod8", "ao0", "Current");
ch2 = addoutput(dq, "cDAQ1Mod8", "ao1", "Current");

18 Data Acquisition Toolbox Examples

18-52

Create and Plot the Output Data

The channels of the NI 9265 have a range of 0 to 20 mA. Produce a ramp from 0 to 20 mA on channel
1, and a constant 10 mA on channel 2. For each waveform, use enough points to generate 10 seconds
of output data at the specified scan rate.

n = 10 * dq.Rate;
data1 = linspace(20e-6, 20e-3, n)';
data2 = repmat(10e-3, n, 1);
data = [data1 data2];
plot(1:n, data)
grid on
xlabel('Data Points')
ylabel('A')
legend('data1','data2')

Generate the Channel Output

Use write to generate the output waveforms.

write(dq, data)

Changing the Duration of the Output

To reduce the duration of the output, increase the generation scan rate. For one second of output,
change the Rate to the number of samples in the scan.

 Generate Signals on NI Devices That Output Current

18-53

dq.Rate = n;
write(dq, data)

18 Data Acquisition Toolbox Examples

18-54

Generate Continuous and Background Signals Using NI Devices
This example shows how to generate analog output data using non-blocking commands. This allows
you to continue working in the MATLAB command window during the generation. This is called
background generation. Use foreground generation to cause MATLAB to wait for the entire data
generation to complete before you can execute your next command.

Create a DataAcquisition and Add Analog Output Channels

Use daq to create a DataAcquisition. This example uses an NI 9263 module in National Instruments®
CompactDAQ Chassis NI cDAQ-9178. This is module 2 in the chassis. Output data on three channels
at a rate of 10000 scans per second.

dq = daq("ni");
dq.Rate = 10000;
addoutput(dq, "cDAQ1Mod2", 0:2, "Voltage");

Create Synchronized Signals

Generate output signals by creating a pattern of data that is repeatedly written to the output device.
The data for each channel is column based and the output signals are synchronized to a common
clock.

Create 3 waveforms:

• data0: 1 cycle of a sine wave
• data1: 1 cycle of a sine wave with a 45 degree phase lag
• data2: 10 cycles of a sine wave

data0 = sin(linspace(0, 2*pi, 1001))';
data1 = sin(linspace(0, 2*pi, 1001) + pi/4)';
data2 = sin(linspace(0, 2*pi*10, 1001))';

The above waveform contains sin(0) and sin(2*pi). To repeat the waveform coherently, omit the final
point.

data0(end) = [];
data1(end) = [];
data2(end) = [];

At a generation rate of 10000 scans per second, you can expect to observe data0 and data1 as 10
Hz sine waves and data2 as a 100 Hz sine wave.

subplot(3,1,1)
plot(data0)
title('data0')
grid on
subplot(3,1,2)
plot(data1)
title('data1')
grid on;
subplot(3,1,3)
plot(data2)
title('data2')
grid on;

 Generate Continuous and Background Signals Using NI Devices

18-55

Queue the Output Data and Start Background Generation

Before starting a continuous generation, preload half a second of data. Use start to initiate the
generation and return control to the command line immediately, allowing you to do other operations
in MATLAB while the generation is running in the background.

preload(dq,repmat([data0, data1, data2], 5, 1));
start(dq, "repeatoutput")

Use pause in a loop to monitor the number of scans output by the hardware for the duration of the
generation.

t = tic;
while toc(t) < 1.0
 pause(0.1)
 fprintf("While loop: scans output by hardware = %d\n", dq.NumScansOutputByHardware)
end

fprintf("Generation has terminated with %d scans output by hardware\n", dq.NumScansAcquired);

While loop: scans output by hardware = 1109
While loop: scans output by hardware = 2089
While loop: scans output by hardware = 3100
While loop: scans output by hardware = 4095
While loop: scans output by hardware = 5093
While loop: scans output by hardware = 6094
While loop: scans output by hardware = 7082
While loop: scans output by hardware = 8082

18 Data Acquisition Toolbox Examples

18-56

While loop: scans output by hardware = 9088
While loop: scans output by hardware = 10099
Generation has terminated with 0 scans output by hardware

Stop the Continuous Background Generation

Background generation runs simultaneously with other operations in MATLAB. Explicitly call stop to
end the background generation.

stop(dq)

Generate Output Data Dynamically Using MATLAB Functions

To dynamically generate the output data using a MATLAB function, assign the function to the
ScansRequiredFcn of the DataAcquisition. The code below is functionally equivalent to
'repeatoutput'

dq.ScanRequiredFunction = (src,evt) write(src, repmat([data0, data1, data2],
5, 1));

start(dq, "continuous")

 Generate Continuous and Background Signals Using NI Devices

18-57

Acquire Data and Generate Signals at the Same Time
This example shows how to acquire and generate data using two National Instruments modules
operating at the same time.

Create a DataAcquisition

Use daq to create a DataAcquisition

dq = daq("ni")

dq =

DataAcquisition using National Instruments hardware:

 Running: 0
 Rate: 1000
 NumScansAvailable: 0
 NumScansAcquired: 0
 NumScansQueued: 0
 NumScansOutputByHardware: 0
 RateLimit: []

Show channels
Show properties and methods

Set up Hardware

This example uses a compactDAQ chassis NI c9178 with NI 9205 (cDAQ1Mod1 - 4 analog input
channels) module and NI 9263 (cDAQ1Mod2 - 4 analog output channels) module. Use daqlist to
obtain more information about connected hardware.

The analog output channels are physically connected to the analog input channels so that the
acquired data is the same as the data generated from the analog output channel.

Add an Analog Input Channel and an Analog Output Channel

Use addinput to add an analog input voltage channel. Use addoutput to add an analog output
voltage channel.

addinput(dq, "cDAQ1Mod1", "ai0", "Voltage")
addoutput(dq, "cDAQ1Mod2", "ao0", "Voltage")

Create and Plot the Output Signal

output = cos(linspace(0,2*pi,1000)');
plot(output);
title("Output Data");

18 Data Acquisition Toolbox Examples

18-58

Generate and Acquire Data

Use readwrite to generate and acquire scans simultaneously.

data1 = readwrite(dq, output);

Plot the Acquired Data

plot(data1.Time, data1.Variables);
ylabel("Voltage (V)")
title("Acquired Signal");

 Acquire Data and Generate Signals at the Same Time

18-59

Generate and Acquire Date for Twice the Previous Duration

data2 = readwrite(dq, [output; output]);

Plot the Acquired Data

plot(data2.Time, data2.Variables);
ylabel("Voltage (V)")
title("Acquired Signal");

18 Data Acquisition Toolbox Examples

18-60

 Acquire Data and Generate Signals at the Same Time

18-61

Log Analog Input Data to a File Using NI Devices
This example shows how to save data acquired in the background to a file.

Create a DataAcquisition with Analog Input Channels

Create a DataAcquisition and add two analog input channels with Voltage measurement type. For
this example use a National Instruments® X Series data acquisition device, NI PCIe-6363 card with
ID Dev1.

d = daqlist("ni")

d =

 12×4 table

 DeviceID Description Model DeviceInfo
 ___________ __________________________________ _____________ ____________________

 "cDAQ1Mod1" "National Instruments NI 9205" "NI 9205" [1×1 daq.DeviceInfo]
 "cDAQ1Mod2" "National Instruments NI 9263" "NI 9263" [1×1 daq.DeviceInfo]
 "cDAQ1Mod3" "National Instruments NI 9234" "NI 9234" [1×1 daq.DeviceInfo]
 "cDAQ1Mod4" "National Instruments NI 9201" "NI 9201" [1×1 daq.DeviceInfo]
 "cDAQ1Mod5" "National Instruments NI 9402" "NI 9402" [1×1 daq.DeviceInfo]
 "cDAQ1Mod6" "National Instruments NI 9213" "NI 9213" [1×1 daq.DeviceInfo]
 "cDAQ1Mod7" "National Instruments NI 9219" "NI 9219" [1×1 daq.DeviceInfo]
 "cDAQ1Mod8" "National Instruments NI 9265" "NI 9265" [1×1 daq.DeviceInfo]
 "Dev1" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]
 "Dev2" "National Instruments NI ELVIS II" "NI ELVIS II" [1×1 daq.DeviceInfo]
 "Dev3" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]
 "Dev4" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]

deviceInfo = d{9, "DeviceInfo"}

deviceInfo =

ni: National Instruments PCIe-6363 (Device ID: 'Dev1')
 Analog input supports:
 7 ranges supported
 Rates from 0.0 to 2000000.0 scans/sec
 32 channels ('ai0' - 'ai31')
 'Voltage' measurement type

 Analog output supports:
 -5.0 to +5.0 Volts,-10 to +10 Volts ranges
 Rates from 0.0 to 2000000.0 scans/sec
 4 channels ('ao0','ao1','ao2','ao3')
 'Voltage' measurement type

 Digital IO supports:
 39 channels ('port0/line0' - 'port2/line6')
 'InputOnly','OutputOnly','Bidirectional' measurement types

 Counter input supports:
 Rates from 0.1 to 100000000.0 scans/sec

18 Data Acquisition Toolbox Examples

18-62

 4 channels ('ctr0','ctr1','ctr2','ctr3')
 'EdgeCount','PulseWidth','Frequency','Position' measurement types

 Counter output supports:
 Rates from 0.1 to 100000000.0 scans/sec
 4 channels ('ctr0','ctr1','ctr2','ctr3')
 'PulseGeneration' measurement type

dq = daq("ni");
addinput(dq, "Dev1", 0:1, "Voltage");
dq.Channels

ans =

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ______ _______ ________________ __________________ __________

 1 "ai" "Dev1" "ai0" "Voltage (Diff)" "-10 to +10 Volts" "Dev1_ai0"
 2 "ai" "Dev1" "ai1" "Voltage (Diff)" "-10 to +10 Volts" "Dev1_ai1"

Create a Log File

Create the file log.bin and open it. The file identifier is used to write to the file.

fid1 = fopen("log.bin","w");

Set the ScansAvailableFcn

During a background acquisition, the DataAcquisition can be directed to handle acquired data in a
specified way using the ScansAvailableFcn property.

dq.ScansAvailableFcn = @(src, evt) logData(src, evt, fid1);

Acquire Data in the Background

Use start to acquire data for five seconds.

start(dq, "Duration", seconds(5))

During normal operation, other MATLAB commands can execute during this acquisition. For this
example, use pause in a loop to monitor the number of scans acquired for the duration of the
acquisition.

while dq.Running
 pause(0.5)
 fprintf("While loop: Scans acquired = %d\n", dq.NumScansAcquired)
end

fprintf("Acquisition has terminated with %d scans acquired\n", dq.NumScansAcquired);

Close the Log File

fclose(fid1);

 Log Analog Input Data to a File Using NI Devices

18-63

Load Data From the Log File

Load file contents as a 3-column matrix into data.

fid2 = fopen('log.bin','r');
[data,count] = fread(fid2,[3,inf],'double');
fclose(fid2);

Assign and Plot the Data

t = data(1,:);
ch = data(2:3,:);
plot(t, ch);

function logData(src, ~, fid)
[data, timestamps, ~] = read(src, src.ScansAvailableFcnCount, "OutputFormat", "Matrix");

data = [timestamps, data]' ;
fwrite(fid,data,'double');
end

While loop: Scans acquired = 500
While loop: Scans acquired = 1000
While loop: Scans acquired = 1500
While loop: Scans acquired = 2000
While loop: Scans acquired = 2500
While loop: Scans acquired = 3000
While loop: Scans acquired = 3500

18 Data Acquisition Toolbox Examples

18-64

While loop: Scans acquired = 4000
While loop: Scans acquired = 4500
While loop: Scans acquired = 5000
Acquisition has terminated with 5000 scans acquired

 Log Analog Input Data to a File Using NI Devices

18-65

Getting Started Acquiring Data with Digilent Analog Discovery
This example shows you how to acquire voltage data at a rate of 300 kHz. The input waveform is a
sine wave (10 Hz, 2 Vpp) provided by an external function generator.

Create a DataAcquisition for a Digilent Device

Discover Digilent devices connected to your system using daqlist.

daqlist("digilent")
dq = daq("digilent")

ans =

 1×4 table

 DeviceID Description Model DeviceInfo
 ________ ___ ____________________ _______________________

 "AD1" "Digilent Inc. Analog Discovery 2 Kit Rev. C" "Analog Discovery 2" [1×1 daq.di.DeviceInfo]

dq =

DataAcquisition using Digilent Inc. hardware:

 Running: 0
 Rate: 10000
 NumScansAvailable: 0
 NumScansAcquired: 0
 NumScansQueued: 0
 NumScansOutputByHardware: 0
 RateLimit: []

Show channels
Show properties and methods

Add an Analog Input Channel

Add an analog input channel with device ID AD1 and channel ID 1. Set the measurement type to
Voltage.

ch_in = addinput(dq, "AD1", "1", "Voltage");

Set DataAcquisition and Channel Properties

Set the acquisition rate to 300 kHz and the dynamic range of the incoming signal to -2.5 to 2.5 volts.

ch_in.Name = "AD1_1_in"
rate = 300e3;
dq.Rate = rate;
ch_in.Range = [-2.5 2.5];

ch_in =

18 Data Acquisition Toolbox Examples

18-66

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ______ _______ ________________ __________________ __________

 1 "ai" "AD1" "1" "Voltage (Diff)" "-25 to +25 Volts" "AD1_1_in"

Acquire a Single Sample

Acquire a single scan on-demand, displaying the data and trigger time.

[singleReading, startTime] = read(dq)

singleReading =

 timetable

 Time AD1_1_in
 _____ ________

 0 sec -0.37211

startTime =

 datetime

 21-Nov-2019 16:56:50.631

Acquire Timestamped Data

Acquire a set of clocked data for one second.

[data, startTime] = read(dq, seconds(1));

Plot Acquired Data

plot(data.Time, data.AD1_1_in);
xlabel('Time (s)');
ylabel('Voltage (V)');
title(['Clocked Data Triggered on: ' datestr(startTime)]);

 Getting Started Acquiring Data with Digilent Analog Discovery

18-67

18 Data Acquisition Toolbox Examples

18-68

Getting Started Generating Data with Digilent Analog
Discovery

This example shows you how to generate voltage data at a rate of 300 kHz.

Discovery Devices

Discover Digilent devices connected to your system using daqlist

daqlist("digilent")

ans =

 1×4 table

 DeviceID Description Model DeviceInfo
 ________ ___ ____________________ _______________________

 "AD1" "Digilent Inc. Analog Discovery 2 Kit Rev. C" "Analog Discovery 2" [1×1 daq.di.DeviceInfo]

Create a DataAcquisition for a Digilent Device

dq = daq("digilent")

dq =

DataAcquisition using Digilent Inc. hardware:

 Running: 0
 Rate: 10000
 NumScansAvailable: 0
 NumScansAcquired: 0
 NumScansQueued: 0
 NumScansOutputByHardware: 0
 RateLimit: []

Show channels
Show properties and methods

Add an Analog Output Channel

Add an analog output channel with device ID AD1 and channel ID 1. Set the measurement type to
Voltage. By default, the voltage range of the output signal is -5.0 to +5.0 volts.

ch_out = addoutput(dq, "AD1", "1", "Voltage");
ch_out.Name = "AD1_1_out"

ch_out =

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ______ _______ _____________________ ____________________ ___________

 Getting Started Generating Data with Digilent Analog Discovery

18-69

 1 "ao" "AD1" "1" "Voltage (SingleEnd)" "-5.0 to +5.0 Volts" "AD1_1_out"

Generate a Single Sample

Generate a single scan on-demand.

outVal = 2;
write(dq, outVal);

Set DataAcquisition Properties and Define the Output Waveform

Set the output scan rate to 300 kHz.

rate = 300e3;
dq.Rate = rate;

% Generate a 10 Hz sine-wave for half a second. The length of the
% output waveform and the specified output rate define the duration of
% the waveform (totalduration = numscans / rate).

f = 10;
totalduration = 1;
n = totalduration * rate;
t = (1:n)/rate;
output = sin(2*pi*f*t)';

Generate Data

write(dq, output);

18 Data Acquisition Toolbox Examples

18-70

Acquiring and Generating Data at the Same Time with Digilent
Analog Discovery

This example shows you how to synchronously generate and acquire voltage data at a rate of 300
kHz.

Discovery Digilent Device

Discover Digilent devices connected to your system using daqlist

daqlist("digilent")

ans =

 1×4 table

 DeviceID Description Model DeviceInfo
 ________ ___ ____________________ _______________________

 "AD1" "Digilent Inc. Analog Discovery 2 Kit Rev. C" "Analog Discovery 2" [1×1 daq.di.DeviceInfo]

Create a DataAcquisition for a Digilent Device

Discover Digilent devices connected to your system using daqlist

dq = daq("digilent")

dq =

DataAcquisition using Digilent Inc. hardware:

 Running: 0
 Rate: 10000
 NumScansAvailable: 0
 NumScansAcquired: 0
 NumScansQueued: 0
 NumScansOutputByHardware: 0
 RateLimit: []

Show channels
Show properties and methods

Add an Analog Output Channel

Add an analog output channel using the listed Digilent device with ID AD1, channel ID 1, and
measurement type Voltage.

addoutput(dq, "AD1", "1", "Voltage");
addoutput(dq, "AD1", "2", "Voltage");
ch_out = dq.Channels(1:2);
ch_out(1).Name = "AD1_1_out";
ch_out(2).Name = "AD1_2_out"

 Acquiring and Generating Data at the Same Time with Digilent Analog Discovery

18-71

ch_out =

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ______ _______ _____________________ ____________________ ___________

 1 "ao" "AD1" "1" "Voltage (SingleEnd)" "-5.0 to +5.0 Volts" "AD1_1_out"
 2 "ao" "AD1" "2" "Voltage (SingleEnd)" "-5.0 to +5.0 Volts" "AD1_2_out"

Add an Analog Input Channel

Add an analog input channel with the same device and measurement type Voltage.

addinput(dq, "AD1", "1", "Voltage");
addinput(dq, "AD1", "2", "Voltage");
ch_in = dq.Channels(3:4);
ch_in(1).Name = "AD1_1_in";
ch_in(2).Name = "AD1_2_in"

ch_in =

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ______ _______ ________________ __________________ __________

 1 "ai" "AD1" "1" "Voltage (Diff)" "-25 to +25 Volts" "AD1_1_in"
 2 "ai" "AD1" "2" "Voltage (Diff)" "-25 to +25 Volts" "AD1_2_in"

Set DataAcquisition Properties and Define an Output Waveform

Set the generation rate to 300 kHz.

rate = 300e3;
dq.Rate = rate;

% Specify a 10 Hz sine wave for 1 second.
f = 10;
totalduration = 1;
n = totalduration * rate;
t = (1:n)/rate;
output = sin(2*pi*f*t)';

Generate and Acquire Data

Generate a sine wave with amplitude 1 V on channel 1 and amplitude 2 V on channel 2 and acquire
timestamped data at the same rate.

[data, startTime] = readwrite(dq, [output 2*output]);

Plot Acquired Data

plot(data.Time, data.AD1_1_in, data.Time, data.AD1_2_in);
xlabel('Time (s)');
ylabel('Voltage (V)');
title(['Clocked Data Triggered at: ' datestr(startTime)])

18 Data Acquisition Toolbox Examples

18-72

 Acquiring and Generating Data at the Same Time with Digilent Analog Discovery

18-73

Generate Standard Periodic Waveforms Using Digilent Analog
Discovery

Use function generator channels to generate a 1 kHz sinusoidal waveform, and record data at the
same time, using an analog input channel.

Discover Digilent Devices

Discover Digilent devices connected to your system using daqlist

daqlist("digilent")
dq = daq("digilent")

ans =

 1×4 table

 DeviceID Description Model DeviceInfo
 ________ ___ ____________________ _______________________

 "AD1" "Digilent Inc. Analog Discovery 2 Kit Rev. C" "Analog Discovery 2" [1×1 daq.di.DeviceInfo]

dq =

DataAcquisition using Digilent Inc. hardware:

 Running: 0
 Rate: 10000
 NumScansAvailable: 0
 NumScansAcquired: 0
 NumScansQueued: 0
 NumScansOutputByHardware: 0
 RateLimit: []

Show channels
Show properties and methods

Add a Function Generator Channel

Add a function generator channel with device ID AD1 and channel ID 1. Set the waveform type to
Sine.

ch_fgen = addoutput(dq, "AD1", "1", "Sine");

Set Channel Properties

Set channel gain to 5 (sets the amplitude of the sinusoid to 5 V). Assign the gain to a variable.

ch_fgen.Name = "AD1_1_fgen"
gain = 5;
ch_fgen.Gain = gain;

ch_fgen =

18 Data Acquisition Toolbox Examples

18-74

 Index Type Device Channel Measurement Type Range Name
 _____ ______ ______ _______ ________________ ____________________ ____________

 1 "fgen" "AD1" "1" "Sine" "-5.0 to +5.0 Volts" "AD1_1_fgen"

Set the signal frequency to 1 kHz

ch_fgen.Frequency = 1000;

Add an Analog Input Channel

Add an analog input channel with device ID AD1 and channel ID 1. Set the measurement type to
Voltage.

ch_in = addinput(dq, "AD1", "1", "Voltage");
ch_in.Name = "AD1_1_in"

ch_in =

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ______ _______ ________________ __________________ __________

 1 "ai" "AD1" "1" "Voltage (Diff)" "-25 to +25 Volts" "AD1_1_in"

Set DataAcquisition Properties

Acquire data at a higher scan rate than the highest frequency in the generated waveform.

dq.Rate = 100 * ch_fgen.Frequency;

Generate a Periodic Waveform and Record Input

[data, startTime] = read(dq, seconds(1));

Plot Data

period = 1/ch_fgen.Frequency;
plot(data.Time, data.AD1_1_in);
xlabel('Time in seconds');
ylabel('Voltage in volts');
title(['Period = ', num2str(period), ' seconds'])
xlim([seconds(0) seconds(5*period)]);
ylim([-gain gain]);

 Generate Standard Periodic Waveforms Using Digilent Analog Discovery

18-75

18 Data Acquisition Toolbox Examples

18-76

Generate Arbitrary Periodic Waveforms Using Digilent Analog
Discovery

Use function generator channels to generate an arbitrary 1kHz waveform function, and record data
at the same time, using an analog input channel.

Discover Digilent Devices

Discover Digilent devices connected to your system using daqlist.

daqlist("digilent")
dq = daq("digilent")

ans =

 1×4 table

 DeviceID Description Model DeviceInfo
 ________ ___ ____________________ _______________________

 "AD1" "Digilent Inc. Analog Discovery 2 Kit Rev. C" "Analog Discovery 2" [1×1 daq.di.DeviceInfo]

dq =

DataAcquisition using Digilent Inc. hardware:

 Running: 0
 Rate: 10000
 NumScansAvailable: 0
 NumScansAcquired: 0
 NumScansQueued: 0
 NumScansOutputByHardware: 0
 RateLimit: []

Show channels
Show properties and methods

Add a Function Generator Channel

Add a function generator channel with device ID AD1 and channel ID 1. Set the waveform type to
Arbitrary. The voltage range of the output signal is -5.0 to +5.0 volts.

ch_fgen = addoutput(dq, "AD1", "1", "Arbitrary");
ch_fgen.Name = "AD1_1_fgen"

ch_fgen =

 Index Type Device Channel Measurement Type Range Name
 _____ ______ ______ _______ ________________ ____________________ ____________

 1 "fgen" "AD1" "1" "Arbitrary" "-5.0 to +5.0 Volts" "AD1_1_fgen"

 Generate Arbitrary Periodic Waveforms Using Digilent Analog Discovery

18-77

Define a Sum of Sinusoids as the Output Waveform

The function generator produces periodic outputs by repeatedly generating the contents of its buffer
(4096 points). A waveform is constructed to fill this buffer without repetition.

buffersize = 4096;
len = buffersize + 1;

f0 = 1;
f1 = 1 * f0;
f2 = 2 * f0;
f3 = 3 * f0;

waveform = sin(linspace(0, 2*pi*f1, len)) + ...
 sin(linspace(0, 2*pi*f2, len)) + ...
 sin(linspace(0, 2*pi*f3, len));

waveform(end) = [];

Assign the Waveform Data and Set Waveform Frequency
frequency = 1000;
ch_fgen.WaveformData = waveform;
ch_fgen.Frequency = frequency;

Add an Analog Input Channel

Add an analog input channel with device ID AD1 and channel ID 1. Set the measurement type to
Voltage.

ch_in = addinput(dq, "AD1", "1", "Voltage");
ch_in.Name = "AD1_1_in"

ch_in =

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ______ _______ ________________ __________________ __________

 1 "ai" "AD1" "1" "Voltage (Diff)" "-25 to +25 Volts" "AD1_1_in"

Define the Acquisition Scan Rate

Acquire data at a higher scan rate than the highest frequency in the generated waveform
(oversampling).

oversamplingratio = 50;
Fn = 2 * frequency;
Fs = oversamplingratio * Fn;
dq.Rate = Fs;

Generate a Periodic Waveform and Record Input
data = read(dq, seconds(3));

Define Plot Parameters
k = 5;
width = 750;

18 Data Acquisition Toolbox Examples

18-78

height = 750;
period = 1/frequency;
numperiods = k * period;
maxamplitude = 3*ch_fgen.Gain;

wavedesired = repmat(waveform', k, 1);
tsamples = linspace(0, numperiods, k * buffersize)';

Define FFT Parameters

L = 2 * oversamplingratio * buffersize;
NFFT = 2^nextpow2(L);
Y = fft(data.AD1_1_in, NFFT)/L;
f0 = (Fs/2) * linspace(0, 1, NFFT/2 + 1);

Plot Waveforms

plotScaleFactor = 12;
plotRange = NFFT/2; % Plot is symmetric about NFFT
plotRange = floor(plotRange / plotScaleFactor);

Yplot = Y(1:plotRange);
fplot = f0(1:plotRange);

fig = figure;

% Plot Desired Waveform
subplot(311)
plot(tsamples, wavedesired);
xlabel('Time (seconds)');
ylabel('Voltage (Volts)');
title('Desired Waveform: sin(2\pi*1000t) + sin(2\pi*2000t) + sin(2\pi*3000t)');
xlim([0 numperiods]);
ylim([-maxamplitude maxamplitude]);

% Plot Acquired Waveform
subplot(312)
plot(data.Time, data.AD1_1_in);
xlabel('Time (seconds)');
ylabel('Voltage (Volts)');
title('Acquired Waveform');
xlim([seconds(0) seconds(numperiods)]);
ylim([-maxamplitude maxamplitude]);

% Plot Single-Sided Amplitude Spectrum
subplot(313)
stem(fplot, 2*abs(Yplot));
title('Single-Sided Amplitude Spectrum of Waveform')
xlabel('Frequency (Hz)')
ylabel('|Y(f)|')
axis tight

% Make Graph Larger
outpos = get(fig, 'OuterPosition');
set(fig, 'OuterPosition', [outpos(1)-125 outpos(2)-375 width height]);

 Generate Arbitrary Periodic Waveforms Using Digilent Analog Discovery

18-79

18 Data Acquisition Toolbox Examples

18-80

Acquire Continuous Audio Data
This example shows how to set up a continuous audio acquisition using a microphone.

Create a DataAcquisition

Create a DataAcquisition with directsound as the vendor and add an audio input channel to it using
addinput.

dq = daq("directsound");
addinput(dq,"Audio0",1,"Audio");

Set Up the FFT Plot

hf = figure;
hp = plot(zeros(1000,1));
T = title('Discrete FFT Plot');
xlabel('Frequency (Hz)')
ylabel('|Y(f)|')
grid on;

Set ScansAvailableFcn

Update the figure with the FFT of the live input signal by setting the ScansAvailableFcn.

dq.ScansAvailableFcn = @(src, evt) continuousFFT(src, hp);

 Acquire Continuous Audio Data

18-81

Start Acquisition

The figure updates, for 10 seconds, as the microphone is used.

start(dq,"Duration",seconds(10));
figure(hf);

function continuousFFT(dataHandle, plotHandle)
% Calculate FFT(data) and update plot with it.
data = read(daqHandle, daqHandle.ScansAvailableFcnCount, "OutputFormat", "Matrix");
Fs = daqHandle.Rate;

lengthOfData = length(data);
% next closest power of 2 to the length
nextPowerOfTwo = 2 ^ nextpow2(lengthOfData);

plotScaleFactor = 4;
% plot is symmetric about n/2
plotRange = nextPowerOfTwo / 2;
plotRange = floor(plotRange / plotScaleFactor);

yDFT = fft(data, nextPowerOfTwo);

h = yDFT(1:plotRange);
abs_h = abs(h);

% Frequency range

18 Data Acquisition Toolbox Examples

18-82

freqRange = (0:nextPowerOfTwo-1) * (Fs / nextPowerOfTwo);
% Only plot up to n/2 (as other half is the mirror image)
gfreq = freqRange(1:plotRange);

% Update the plot
set(plotHandle, 'ydata', abs_h, 'xdata', gfreq);
drawnow
end

 Acquire Continuous Audio Data

18-83

Generate Audio Signals
This example shows how to generate audio signals using a 5.1 channel sound system.

Load Audio Signal

Load an audio file containing a sample of Handel's "Hallelujah Chorus."

load handel;

Plot Audio Signal

Plot the data to identify five distinct segments. Each segment represents a "Hallelujah" in the chorus.
The segments are annotated as 1 to 5.

ly = length(y);
lspan = 1:ly;
t = lspan/Fs;

hf = figure;
plot(t,y./max(y))
axis tight;
title("Signal (Handel''s Hallelujah Chorus) vs Time");
xlabel("Time (s)");
ylabel("Amplitude");

markers = struct('xpos',[0.2,0.4,0.55,0.65,0.8],'string',num2str([1:5]'));
for i = 1:5,
 annotation(hf,'textbox',[markers.xpos(i) 0.48 0.048 0.080],'String', markers.string(i),'BackgroundColor','w','FontSize',16);
end

18 Data Acquisition Toolbox Examples

18-84

Create a DataAcquisition and Add Audio Output Channels

This example uses a 5.1 channel sound system with device ID 'Audio2'.

1. Create a DataAcquisition with directsound as the vendor and add an audio output channel to it.

dd = daq("directsound");
nch = 6;
addoutput(dd, "Audio2", 1:nch, "Audio");

2. Update the generation scan rate to match the audio sampling rate.

dd.Rate = Fs;

3. Generate audio signals (Handel's "Hallelujah Chorus"). "Hallelujah" should be voiced five times,
one for each segment depicted in the figure on all channels of the speaker system.

write(dd, repmat(y,1,nch));

4. Close the figure.

close(hf);

 Generate Audio Signals

18-85

Generating Multichannel Audio
This example shows how to set up continuous audio generation using multiple audio channels. The
signal, a sample of Handel's "Hallelujah Chorus", is broken up into contiguous segments and played
back in two parts. The first part of the example plays each segment on a single speaker and a sub-
woofer. The second part plays each segment on a different set of speakers (a choir of voices).

Load Audio Data

Load Handel's "Hallelujah".

Load variables:

• y representing the Hallelujah waveform
• Fs representing the sampling frequency

load handel;

Create a Data Acquisition

Create a DataAcquisition object using directsound as the vendor ID.

dq = daq("directsound")

Add Channels and Adjust Generation Scan Rate to Match the Audio Sampling Frequency

Add six audio output channels and set the generation scan rate to the audio sampling rate.

addoutput(dq,"Audio7",1:6,"Audio");
dq.Rate = Fs;

Plot Audio Data

Visually identify audio segments that correspond to each "Hallelujah" in the chorus and select sample
numbers at which these segments start and stop. Each color in the plot corresponds to a different
segment of the chorus.

18 Data Acquisition Toolbox Examples

18-86

 Generating Multichannel Audio

18-87

Identify the End of Each Segment

Visually identify the segment boundaries and mark them.

segmentEnd = [20000, 36000, 45000, 55000, length(y)];

Define Speaker Parameters

Set up a selection of speakers in a cell array named speakerselection to play five segments of
"Hallelujah" on six different speakers.

nspeakers = 6;
nspeakergroups = 5;
speakerselection = cell(1, nspeakergroups);

Assign Speakers to Groups

Each speaker selection specifies which speakers from the 5.1 channel speaker system play each audio
segment (these assignments may vary for your speaker system). For the first part of the example, use
single speakers paired with the sub-woofer (4).

• Speaker 1: Left-Front
• Speaker 2: Right-Front
• Speaker 3: Center
• Speaker 4: Sub-Woofer
• Speaker 5: Left-Rear
• Speaker 6: Right-Rear

speakerselection{1} = [4, 6];
% Segment 1; speakers 4 and 6
speakerselection{2} = [4, 5];
% Segment 2; speakers 4 and 5
speakerselection{3} = [1, 4];
% Segment 3; speakers 1 and 4
speakerselection{4} = [2, 4];
% Segment 4; speakers 2 and 4
speakerselection{5} = [3, 4];
% Segment 5; speakers 3 and 4

[singleChannelOutputs] = ...
 surroundSoundVoices(y, segmentEnd, nspeakers, nspeakergroups, speakerselection);

Write Single Channel Outputs

Write a sequence of single channel outputs and then pause before proceeding to the next section.

write(dq, singleChannelOutputs);
pause(3);

Assign Speakers to Groups

Each speaker selection specifies which speakers from the 5.1 channel speaker system play each audio
segment (these assignments may vary for your speaker system). For the second part of the example,
use groups of speakers. Note that the sub-woofer (4) is included in all speaker selections

18 Data Acquisition Toolbox Examples

18-88

• Speaker 1: Left-Front
• Speaker 2: Right-Front
• Speaker 3: Center
• Speaker 4: Sub-Woofer
• Speaker 5: Left-Rear
• Speaker 6: Right-Rear

speakerselection{1} = [4, 5, 6]; % Segment 1; speakers 4, 5, 6
speakerselection{2} = [1, 2, 4]; % Segment 2; speakers 1, 2, 4
speakerselection{3} = [3, 4]; % Segment 3; speakers 3, 4
speakerselection{4} = [1, 2, 3, 4]; % Segment 4; speakers 1, 2, 3, 4
speakerselection{5} = [1, 2, 3, 4, 5, 6]; % Segment 5; all speakers

[multiChannelOutput] = ...
 surroundSoundVoices(y, segmentEnd, nspeakers, nspeakergroups, speakerselection);

Write Multichannel Outputs

write(dq, multiChannelOutput);

function [multiChannelOutput] = surroundSoundVoices(audioOut, segmentEnds, numSpeakers, numSpeakerGroups, speakerGroups)
% Distribute contiguous segments of an output waveform to multiple groups
% of speakers in a one-to-one relationship. The input waveform is broken up
% into contiguous segments. Each segment is output by one and only one
% group of speakers, with each group being visited in turn.

% Break up the input waveform into segments to be played by various groups
% of speakers. In this demonstration, we would like to slowly add "voices"
% by incrementally having more speakers generate the output waveform.
% In particular, we will regard the output waveform as a contiguous
% sequence of segments (one segment per group of speakers). For example, if
% we have 3 groups of speakers, we can think of breaking up the output
% waveform into 3 segments: output = [s1 s2 s3]
% Speaker group 1 outputs: s1 0 0
% Speaker group 2 outputs: 0 s2 0
% Speaker group 3 outputs: 0 0 s3

multiChannelOutput = repmat(0.01, length(audioOut), numSpeakers);
startOfSegment = [1 (segmentEnds(1:end-1)+1)];

for i = 1:numSpeakerGroups
 speakergroup = speakerGroups{i};
 n = numel(speakergroup);
 for j = 1:n
 range = startOfSegment(i):segmentEnds(i);
 multiChannelOutput(range, speakergroup(j)) = audioOut(range);
 end
end

end

 Generating Multichannel Audio

18-89

Capture Data with Software-Analog Triggering
This example shows how to implement a triggered data capture based on a trigger condition defined
in software. Data Acquisition Toolbox provides functionality for hardware triggering a data
acquisition object, for example starting acquisition from a DAQ device based on an external digital
trigger signal (rising or falling edge). For some applications however, it is desirable to start capturing
or logging data based on the analog signal being measured, allowing for capturing only the signal of
interest out of a continuous stream of digitized measurement data (such as an audio recording when
the signal level passes a certain threshold).

A custom graphical user interface (UI) is used to display a live plot of the data acquired in continuous
mode, and allows you to input trigger parameters values for a custom trigger condition, which is
based on the acquired analog input signal level and slope. Captured data is displayed in the
interactive UI, and is saved to a MATLAB base workspace variable.

This example can be easily modified to instead use audio input channels with a DirectSound
supported audio device.

The code is structured as a single program file, with a main function and several local functions.

Hardware Setup

• A DAQ device (such as NI USB-6218) with analog input channels, supported by the
DataAcquisition interface in background acquisition mode.

• External signal connections to analog input channels. The data in this example represents
measured voltages from a series resistor-capacitor (RC) circuit: total voltage across RC (in this
example supplied by a function generator) is measured on channel AI0, and voltage across the
capacitor is measured on channel AI1.

Configure Data Acquisition and Capture Parameters (Main Function)

Configure a data acquisition object with two analog input channels and set acquisition parameters.
Background continuous acquisition mode provides the acquired data by calling a user defined

18 Data Acquisition Toolbox Examples

18-90

callback function (dataCapture) when ScansAvailable events occur. A custom graphical user interface
(UI) is used for live acquired data visualization and for interactive data capture based on user
specified trigger parameters.

function softwareAnalogTriggerCapture
%softwareAnalogTriggerCapture DAQ data capture using software-analog triggering
% softwareAnalogTriggerCapture launches a user interface for live DAQ data
% visualization and interactive data capture based on a software analog
% trigger condition.

% Configure data acquisition object and add input channels
s = daq('ni');
ch1 = addinput(s, 'Dev1', 0, 'Voltage');
ch2 = addinput(s, 'Dev1', 1, 'Voltage');

% Set acquisition configuration for each channel
ch1.TerminalConfig = 'SingleEnded';
ch2.TerminalConfig = 'SingleEnded';
ch1.Range = [-10.0 10.0];
ch2.Range = [-10.0 10.0];

% Set acquisition rate, in scans/second
s.Rate = 10000;

% Specify the desired parameters for data capture and live plotting.
% The data capture parameters are grouped in a structure data type,
% as this makes it simpler to pass them as a function argument.

% Specify triggered capture timespan, in seconds
capture.TimeSpan = 0.45;

% Specify continuous data plot timespan, in seconds
capture.plotTimeSpan = 0.5;

% Determine the timespan corresponding to the block of samples supplied
% to the ScansAvailable event callback function.
callbackTimeSpan = double(s.ScansAvailableFcnCount)/s.Rate;
% Determine required buffer timespan, seconds
capture.bufferTimeSpan = max([capture.plotTimeSpan, capture.TimeSpan * 3, callbackTimeSpan * 3]);
% Determine data buffer size
capture.bufferSize = round(capture.bufferTimeSpan * s.Rate);

% Display graphical user interface
hGui = createDataCaptureUI(s);

% Configure a ScansAvailableFcn callback function
% The specified data capture parameters and the handles to the UI graphics
% elements are passed as additional arguments to the callback function.
s.ScansAvailableFcn = @(src,event) dataCapture(src, event, capture, hGui);

% Configure a ErrorOccurredFcn callback function for acquisition error
% events which might occur during background acquisition
s.ErrorOccurredFcn = @(src,event) disp(getReport(event.Error));

% Start continuous background data acquisition
start(s, 'continuous')

% Wait until data acquisition object is stopped from the UI

 Capture Data with Software-Analog Triggering

18-91

while s.Running
 pause(0.5)
end

% Disconnect from hardware
delete(s)
end

18 Data Acquisition Toolbox Examples

18-92

Background Acquisition Callback Function

The dataCapture user-defined callback function is being called repeatedly, each time a ScansAvailable
event occurs. With each callback function execution, the latest acquired data block and timestamps
are added to a persistent FIFO data buffer, a continuous acquired data plot is updated, latest data is
analyzed to check whether the trigger condition is met, and -- once capture is triggered and enough
data has been captured for the specified timespan -- captured data is saved in a base workspace
variable. The captured data is an N x M matrix corresponding to N acquired data scans, with the
timestamps as the first column, and the acquired data corresponding to each channel as columns
2:M.

function dataCapture(src, ~, c, hGui)
%dataCapture Process DAQ acquired data when called by ScansAvailable event.
% dataCapture processes latest acquired data and timestamps from data
% acquisition object (src), and, based on specified capture parameters (c
% structure) and trigger configuration parameters from the user interface
% elements (hGui handles structure), updates UI plots and captures data.
%
% c.TimeSpan = triggered capture timespan (seconds)
% c.bufferTimeSpan = required data buffer timespan (seconds)
% c.bufferSize = required data buffer size (number of scans)
% c.plotTimeSpan = continuous acquired data timespan (seconds)
%

[eventData, eventTimestamps] = read(src, src.ScansAvailableFcnCount, ...
 'OutputFormat', 'Matrix');

% The read data is stored in a persistent buffer (dataBuffer), which is
% sized to allow triggered data capture.
% Since multiple calls to dataCapture will be needed for a triggered
% capture, a trigger condition flag (trigActive) and a corresponding
% data timestamp (trigMoment) are used as persistent variables.
% Persistent variables retain their values between calls to the function.

persistent dataBuffer trigActive trigMoment

% If dataCapture is running for the first time, initialize persistent vars
if eventTimestamps(1)==0
 dataBuffer = []; % data buffer
 trigActive = false; % trigger condition flag
 trigMoment = []; % data timestamp when trigger condition met
 prevData = []; % last data point from previous callback execution
else
 prevData = dataBuffer(end, :);
end

% Store continuous acquisition timestamps and data in persistent FIFO
% buffer dataBuffer
latestData = [eventTimestamps, eventData];
dataBuffer = [dataBuffer; latestData];
numSamplesToDiscard = size(dataBuffer,1) - c.bufferSize;
if (numSamplesToDiscard > 0)
 dataBuffer(1:numSamplesToDiscard, :) = [];
end

 Capture Data with Software-Analog Triggering

18-93

% Update live data plot
% Plot latest plotTimeSpan seconds of data in dataBuffer
samplesToPlot = min([round(c.plotTimeSpan * src.Rate), size(dataBuffer,1)]);
firstPoint = size(dataBuffer, 1) - samplesToPlot + 1;
% Update x-axis limits
xlim(hGui.Axes1, [dataBuffer(firstPoint,1), dataBuffer(end,1)]);
% Live plot has one line for each acquisition channel
for ii = 1:numel(hGui.LivePlot)
 set(hGui.LivePlot(ii), 'XData', dataBuffer(firstPoint:end, 1), ...
 'YData', dataBuffer(firstPoint:end, 1+ii))
end

% If capture is requested, analyze latest acquired data until a trigger
% condition is met. After enough data is acquired for a complete capture,
% as specified by the capture timespan, extract the capture data from the
% data buffer and save it to a base workspace variable.

% Get capture toggle button value (1 or 0) from UI
captureRequested = hGui.CaptureButton.Value;

if captureRequested && (~trigActive)
 % State: "Looking for trigger event"

 % Update UI status
 hGui.StatusText.String = 'Waiting for trigger';

 % Get the trigger configuration parameters from UI text inputs and
 % place them in a structure.
 % For simplicity, validation of user input is not addressed in this example.
 trigConfig.Channel = sscanf(hGui.TrigChannel.String, '%u');
 trigConfig.Level = sscanf(hGui.TrigLevel.String, '%f');
 trigConfig.Slope = sscanf(hGui.TrigSlope.String, '%f');

 % Determine whether trigger condition is met in the latest acquired data
 % A custom trigger condition is defined in trigDetect user function
 [trigActive, trigMoment] = trigDetect(prevData, latestData, trigConfig);

elseif captureRequested && trigActive && ((dataBuffer(end,1)-trigMoment) > c.TimeSpan)
 % State: "Acquired enough data for a complete capture"
 % If triggered and if there is enough data in dataBuffer for triggered
 % capture, then captureData can be obtained from dataBuffer.

 % Find index of sample in dataBuffer with timestamp value trigMoment
 trigSampleIndex = find(dataBuffer(:,1) == trigMoment, 1, 'first');
 % Find index of sample in dataBuffer to complete the capture
 lastSampleIndex = round(trigSampleIndex + c.TimeSpan * src.Rate());
 captureData = dataBuffer(trigSampleIndex:lastSampleIndex, :);

 % Reset trigger flag, to allow for a new triggered data capture
 trigActive = false;

 % Update captured data plot (one line for each acquisition channel)
 for ii = 1:numel(hGui.CapturePlot)
 set(hGui.CapturePlot(ii), 'XData', captureData(:, 1), ...
 'YData', captureData(:, 1+ii))
 end

18 Data Acquisition Toolbox Examples

18-94

 % Update UI to show that capture has been completed
 hGui.CaptureButton.Value = 0;
 hGui.StatusText.String = '';

 % Save captured data to a base workspace variable
 % For simplicity, validation of user input and checking whether a variable
 % with the same name already exists are not addressed in this example.
 % Get the variable name from UI text input
 varName = hGui.VarName.String;
 % Use assignin function to save the captured data in a base workspace variable
 assignin('base', varName, captureData);

elseif captureRequested && trigActive && ((dataBuffer(end,1)-trigMoment) < c.TimeSpan)
 % State: "Capturing data"
 % Not enough acquired data to cover capture timespan during this callback execution
 hGui.StatusText.String = 'Triggered';

elseif ~captureRequested
 % State: "Capture not requested"
 % Capture toggle button is not pressed, set trigger flag and update UI
 trigActive = false;
 hGui.StatusText.String = '';
end

drawnow

end

Create a Graphical User Interface for Live Data Capture

Create a user interface programmatically, by creating a figure, one plot for live acquired data, one
plot for captured data, buttons for starting capture and stopping acquisition, and text fields for
entering trigger configuration parameters and status update.

For simplicity, the figure and all user interface components have a fixed size and position defined in
pixels. For high DPI displays the position values might have to be adjusted for optimum dimensions
and layout. Another option for creating a custom UI is to use App Designer.

function hGui = createDataCaptureUI(s)
%createDataCaptureUI Create a graphical user interface for data capture.
% hGui = createDataCaptureUI(s) returns a structure of graphics
% components handles (hGui) and creates a graphical user interface, by
% programmatically creating a figure and adding required graphics
% components for visualization of data acquired from a data acquisition
% object (s).

% Create a figure and configure a callback function (executes on window close)
hGui.Fig = figure('Name','Software-analog triggered data capture', ...
 'NumberTitle', 'off', 'Resize', 'off', ...
 'Toolbar', 'None', 'Menu', 'None',...
 'Position', [100 100 750 650]);
hGui.Fig.DeleteFcn = {@endDAQ, s};
uiBackgroundColor = hGui.Fig.Color;

% Create the continuous data plot axes with legend
% (one line per acquisition channel)
hGui.Axes1 = axes;

 Capture Data with Software-Analog Triggering

18-95

hGui.LivePlot = plot(0, zeros(1, numel(s.Channels)));
xlabel('Time (s)');
ylabel('Voltage (V)');
title('Continuous data');
legend({s.Channels.ID}, 'Location', 'northwestoutside')
hGui.Axes1.Units = 'Pixels';
hGui.Axes1.Position = [207 391 488 196];
% Turn off axes toolbar and data tips for live plot axes
hGui.Axes1.Toolbar.Visible = 'off';
disableDefaultInteractivity(hGui.Axes1);

% Create the captured data plot axes (one line per acquisition channel)
hGui.Axes2 = axes('Units', 'Pixels', 'Position', [207 99 488 196]);
hGui.CapturePlot = plot(NaN, NaN(1, numel(s.Channels)));
xlabel('Time (s)');
ylabel('Voltage (V)');
title('Captured data');
hGui.Axes2.Toolbar.Visible = 'off';
disableDefaultInteractivity(hGui.Axes2);

% Create a stop acquisition button and configure a callback function
hGui.DAQButton = uicontrol('style', 'pushbutton', 'string', 'Stop DAQ',...
 'units', 'pixels', 'position', [65 394 81 38]);
hGui.DAQButton.Callback = {@endDAQ, s};

% Create a data capture button and configure a callback function
hGui.CaptureButton = uicontrol('style', 'togglebutton', 'string', 'Capture',...
 'units', 'pixels', 'position', [65 99 81 38]);
hGui.CaptureButton.Callback = {@startCapture, hGui};

% Create a status text field
hGui.StatusText = uicontrol('style', 'text', 'string', '',...
 'units', 'pixels', 'position', [67 28 225 24],...
 'HorizontalAlignment', 'left', 'BackgroundColor', uiBackgroundColor);

% Create an editable text field for the captured data variable name
hGui.VarName = uicontrol('style', 'edit', 'string', 'mydata',...
 'units', 'pixels', 'position', [87 159 57 26]);
% Create an editable text field for the trigger channel
hGui.TrigChannel = uicontrol('style', 'edit', 'string', '1',...
 'units', 'pixels', 'position', [89 258 56 24]);
% Create an editable text field for the trigger signal level
hGui.TrigLevel = uicontrol('style', 'edit', 'string', '1.0',...
 'units', 'pixels', 'position', [89 231 56 24]);
% Create an editable text field for the trigger signal slope
hGui.TrigSlope = uicontrol('style', 'edit', 'string', '200.0',...
 'units', 'pixels', 'position', [89 204 56 24]);
% Create text labels
hGui.txtTrigParam = uicontrol('Style', 'text', 'String', 'Trigger parameters', ...
 'Position', [39 290 114 18], 'BackgroundColor', uiBackgroundColor);
hGui.txtTrigChannel = uicontrol('Style', 'text', 'String', 'Channel', ...
 'Position', [37 261 43 15], 'HorizontalAlignment', 'right', ...
 'BackgroundColor', uiBackgroundColor);
hGui.txtTrigLevel = uicontrol('Style', 'text', 'String', 'Level (V)', ...
 'Position', [35 231 48 19], 'HorizontalAlignment', 'right', ...
 'BackgroundColor', uiBackgroundColor);
hGui.txtTrigSlope = uicontrol('Style', 'text', 'String', 'Slope (V/s)', ...
 'Position', [17 206 66 17], 'HorizontalAlignment', 'right', ...

18 Data Acquisition Toolbox Examples

18-96

 'BackgroundColor', uiBackgroundColor);
hGui.txtVarName = uicontrol('Style', 'text', 'String', 'Variable name', ...
 'Position', [35 152 44 34], 'BackgroundColor', uiBackgroundColor);

end

function startCapture(obj, ~, hGui)
if obj.Value
 % If button is pressed clear data capture plot
 for ii = 1:numel(hGui.CapturePlot)
 set(hGui.CapturePlot(ii), 'XData', NaN, 'YData', NaN);
 end
end
end

function endDAQ(~, ~, s)
if isvalid(s)
 if s.Running
 stop(s);
 end
end
end

Background operation has started.
To stop the background operation, use stop.
To read acquired scans, use read.

Detect Trigger Condition in Acquired Data

In this example, the trigger condition is defined by the signal level on the trigger channel and the
corresponding slope. Depending on the application and actual data being acquired, data filtering or
more complex trigger conditions can be implemented.

function [trigDetected, trigMoment] = trigDetect(prevData, latestData, trigConfig)
%trigDetect Detect if trigger condition is met in acquired data
% [trigDetected, trigMoment] = trigDetect(prevData, latestData, trigConfig)
% Returns a detection flag (trigDetected) and the corresponding timestamp
% (trigMoment) of the first data point which meets the trigger condition
% based on signal level and slope specified by the trigger parameters
% structure (trigConfig).
% The input data (latestData) is an N x M matrix corresponding to N acquired
% data scans, with the timestamps as the first column, and channel data
% as columns 2:M. The previous data point prevData (1 x M vector of timestamp
% and channel data) is used to determine the slope of the first data point.
%
% trigConfig.Channel = index of trigger channel in data acquisition object channels
% trigConfig.Level = signal trigger level (V)
% trigConfig.Slope = signal trigger slope (V/s)

% Condition for signal trigger level
trigCondition1 = latestData(:, 1+trigConfig.Channel) > trigConfig.Level;

data = [prevData; latestData];

% Calculate slope of signal data points
% Calculate time step from timestamps
dt = latestData(2,1)-latestData(1,1);
slope = diff(data(:, 1+trigConfig.Channel))/dt;

 Capture Data with Software-Analog Triggering

18-97

% Condition for signal trigger slope
trigCondition2 = slope > trigConfig.Slope;

% If first data block acquired, slope for first data point is not defined
if isempty(prevData)
 trigCondition2 = [false; trigCondition2];
end

% Combined trigger condition to be used
trigCondition = trigCondition1 & trigCondition2;

trigDetected = any(trigCondition);
trigMoment = [];
if trigDetected
 % Find time moment when trigger condition has been met
 trigTimeStamps = latestData(trigCondition, 1);
 trigMoment = trigTimeStamps(1);
end
end

18 Data Acquisition Toolbox Examples

18-98

Count Pulses on a Digital Signal Using NI Devices
This example shows how to determine the rate of rotation of an Anaheim Automation motor controller
by counting the number of rising edges in the signal. The controller returns hall effect pulses (square
waves) that serve as frequency feedback for motor rotation speeds.

Create a Counter Input Channel

Use daq to create a DataAcquisition and addinput to add a counter input channel with EdgeCount
measurement type. For this example, use CompactDAQ chassis NI c9178 and module NI 9402 with ID
cDAQ1Mod5.

dq = daq("ni");
ch = addinput(dq,"cDAQ1Mod5", "ctr0", "EdgeCount");
ch

ch =

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ___________ _______ ________________ _____ ________________

 1 "ci" "cDAQ1Mod5" "ctr0" "EdgeCount" "n/a" "cDAQ1Mod5_ctr0"

Determine the Terminal of the Counter Input Channel

To connect the input signal to the correct terminal, examine the Terminal property of the channel.
The terminal is determined by the hardware.

ch.Terminal

ans =

 'PFI0'

Read the Counter Channel

To determine if the counter is operational, input a single scan, pause while the motor rotates, then
read the counter again.

read(dq)

ans =

 timetable

 Time cDAQ1Mod5_ctr0
 _____ ______________

 0 sec 3

pause(0.1);
read(dq)

 Count Pulses on a Digital Signal Using NI Devices

18-99

ans =

 timetable

 Time cDAQ1Mod5_ctr0
 _____ ______________

 0 sec 14

pause(0.1);
read(dq)

ans =

 timetable

 Time cDAQ1Mod5_ctr0
 _____ ______________

 0 sec 27

Measure Revolutions per Second

Count the number of pulses by resetting the counter to zero, pause for one second, and read the
counter. The hall effects are oriented every 120 degrees and generate three square wave pulses for
every rotation.

resetcounters(dq);
pause(1);
read(dq, "OutputFormat", "Matrix")/3

ans =

 33.6667

Use Hardware Clock for Higher Accuracy

The hardware clock is highly accurate. Use the hardware clock to acquire multiple counter
measurements. NI counter devices require an external clock. By adding an analog input channel for a
module on the same chassis, the DataAcquisition shares an internal clock with both modules.

dq = daq("ni");
addinput(dq,"cDAQ1Mod1", "ai0", "Voltage");
addinput(dq,"cDAQ1Mod5", "ctr0", "EdgeCount");
data = read(dq, seconds(0.25));
plot(data.Time, data.Variables);

18 Data Acquisition Toolbox Examples

18-100

 Count Pulses on a Digital Signal Using NI Devices

18-101

Measure Frequency Using NI Devices
This example shows how to measure frequency to determine rate of flow of fluid using a flow sensor.
The sensor generates a digital signal with frequency that correlates to the rate of flow of fluid.

Create a Counter Input Channel

Use daq to create a DataAcquisition and addinput to add a counter input channel with Frequency
measurement type. For this example, use CompactDAQ chassis NI c9178 and module NI 9402 with ID
cDAQ1Mod5.

dq = daq("ni");
ch = addinput(dq,"cDAQ1Mod5", "ctr0", "Frequency");
ch

ch =

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ___________ _______ ________________ _____ ________________

 1 "ci" "cDAQ1Mod5" "ctr0" "Frequency" "n/a" "cDAQ1Mod5_ctr0"

Determine the Terminal of the Counter Input Channel

To connect the input signal to the correct terminal, examine the Terminal property of the channel.
The terminal is determined by the hardware.

ch.Terminal

ans =

 'PFI1'

Measure Frequency

To determine if the counter is operational, input a single scan while the motor is rotating.

read(dq)

ans =

 timetable

 Time cDAQ1Mod5_ctr0
 _____ ______________

 0 sec 100

18 Data Acquisition Toolbox Examples

18-102

Monitor Frequency over Time

Use the hardware clock to acquire multiple counter measurements over time. NI counter devices
require an external clock. By adding an analog input channel for a module on the same chassis, the
session shares an internal clock with both modules.

dq = daq("ni");
dq.Rate = 1;
addinput(dq,"cDAQ1Mod1", "ai0", "Voltage");
addinput(dq,"cDAQ1Mod5", "ctr0", "Frequency");

data = read(dq, seconds(10));
plot(data.Time, data.cDAQ1Mod5_ctr0);

 Measure Frequency Using NI Devices

18-103

Measure Pulse Width Using NI Devices
This example shows how to measure the width of an active high pulse. A sensor is used to measure
distance from a point: the width of the pulse is correlated with the measured distance.

Create a Counter Input Channel

Create a DataAcquisition, and add a counter input channel with PulseWidth measurement type. For
this example, use CompactDAQ chassis NI c9178 and module NI 9402 with ID cDAQ1Mod5.

dq = daq("ni");
ch = addinput(dq, "cDAQ1Mod5", "ctr0", "PulseWidth");

Determine the Terminal of the Counter Input Channel

To connect the input signal to the correct terminal, examine the Terminal property of the channel.
The terminal is determined by the hardware.

ch.Terminal

ans =

 'PFI1'

Measure Distance

To determine if the counter is operational, acquire a single scan. The sensor generates a high pulse of
width 0.0010 seconds corresponding a distance of one meter.

1000*read(dq, "OutputFormat", "Matrix")

ans =

 5

Measure Distance over Time

Use the hardware clock to acquire multiple counter measurements over time. NI counter devices
require an external clock. By adding an analog input channel for a module on the same chassis, the
internal clock is shared with both modules.

dq = daq("ni");
addinput(dq, "cDAQ1Mod1", "ai0", "Voltage");
addinput(dq, "cDAQ1Mod5", "ctr0", "PulseWidth");

dq.Rate = 1;
data = read(dq, seconds(10));
plot(data.Time, 1000*data.cDAQ1Mod5_ctr0);

18 Data Acquisition Toolbox Examples

18-104

 Measure Pulse Width Using NI Devices

18-105

Generate Pulse Width Modulated Signals Using NI Devices
This example shows how to generate a pulse width modulated signal to drive a stepper motor.

Create a Counter Output Channel

Use daq to create a DataAcquisition. Use addoutput to add a counter output channel with
PulseGeneration measurement type, and addinput to add an analog input channel to monitor the
pulse generated by the counter output channel. For this example, use CompactDAQ chassis NI c9178
and module NI 9402 with ID cDAQ1Mod5 for the pulse generation and NI 9205 with ID cDAQ1Mod1
for the voltage input.

dq = daq("ni");
addinput(dq,"cDAQ1Mod1", "ai0", "Voltage");
ctr = addoutput(dq,"cDAQ1Mod5", "ctr0", "PulseGeneration");
dq.Channels

ans =

 Index Type Device Channel Measurement Type Range Name
 _____ ____ ___________ _______ _________________ __________________ ________________

 1 "ai" "cDAQ1Mod1" "ai0" "Voltage (Diff)" "-10 to +10 Volts" "cDAQ1Mod1_ai0"
 2 "co" "cDAQ1Mod5" "ctr0" "PulseGeneration" "n/a" "cDAQ1Mod5_ctr0"

Determine the Terminal of the Counter Output Channel

To connect the output signal to the correct terminal, examine the Terminal property of the counter
channel. The terminal is determined by the hardware.

ctr.Terminal

ans =

 'PFI0'

Clocked Counter Output

Use counter output channel 0 to generate a fixed pulse width modulated signal on terminal PFI0.
Trigger the motor after 0.5 seconds, with a 75% duty cycle.

ctr.Frequency = 10;
ctr.InitialDelay = 0.5;
ctr.DutyCycle = 0.75;

% StartForeground returns data for input channels only. The data variable
% will contain one column of data.
start(dq, "Duration", seconds(1));

while dq.Running
 pause(0.1);
end

18 Data Acquisition Toolbox Examples

18-106

data = read(dq, seconds(1));
plot(data.Time, data.Variables);

 Generate Pulse Width Modulated Signals Using NI Devices

18-107

Measure Angular Position with an Incremental Rotary Encoder
This example shows how to acquire angular position data using an incremental rotary encoder and a
multifunction data acquisition (DAQ) device with the Data Acquisition Toolbox quadrature encoder
measurement functionality.

An incremental rotary encoder is typically mounted on the shaft of a mechanical system, such as a
wind turbine or a robotic arm, to provide motion or position information. The encoder outputs two
quadrature signals, which provide information on the relative change in position and the direction of
rotation. The counter subsystem of the DAQ device uses the signals output by the encoder to
calculate the change in position, and keep track of the most recent position value. In MATLAB, an
input channel with a Position measurement type is used to read the position values.

This example uses an optical shaft encoder (US Digital H6-2500-IE-S) and a multifunction DAQ device
(NI USB-6255) with counter channels which have quadrature encoder capability.

Create a Data Acquisition Object

Create a data acquisition object and add an input channel with Position measurement type.

s = daq('ni');
ch1 = addinput(s, 'Dev1', 'ctr0', 'Position');

Configure Hardware

A rotary quadrature encoder outputs two quadrature signals, A and B, which provide information on
the relative change in position and the direction of rotation. Optionally, some models also output an
index or reference signal, Z, which is active once per revolution. You can use the Z signal to reset the
counter position to a known reference value.

Connect A, B, and Z signal outputs from the encoder device to the proper DAQ input terminals
specified by the DAQ device datasheet (PFI8, PFI10, and PFI9 for NI USB-6255). The correct
terminals depend on the device model and the counter channel used, and can be listed by reading the
following properties:

ch1.TerminalA

ans =

 'PFI8'

ch1.TerminalB

ans =

 'PFI10'

ch1.TerminalZ

ans =

18 Data Acquisition Toolbox Examples

18-108

 'PFI9'

Configure quadrature cycle encoding type (X1, X2, or X4). This corresponds to the number of counts
(counter value increments or decrements) output by the encoder for each quadrature cycle (1, 2, or
4.), as specified in the encoder datasheet.

ch1.EncoderType = 'X1';

Read Encoder Position on Demand

The DAQ device counter hardware keeps track of the relative position changes signaled by the
encoder. Use read to read an updated position from the counter input channel.

encoderPosition = read(s, 1, 'OutputFormat', 'Matrix')

encoderPosition =

 0

This example uses an optical encoder model with a resolution of 2500 quadrature cycles per shaft
revolution, as specified in the encoder datasheet.

Convert counter values to angular position (in degrees) using the encoder resolution and the
encoding type ('X1' in this case).

encoderCPR = 2500;
encoderPositionDeg = encoderPosition * 360/encoderCPR

encoderPositionDeg =

 0

Acquire Hardware-Timed Encoder Position Data

For applications where high time-resolution is required the data acquisition must be hardware-timed
(clocked). As proof of concept, this example characterizes the motion of a swinging pendulum by
measuring its angular position vs. time.

To acquire hardware-timed data from a counter input channel, NI DAQ devices require the use of an
external clock or the use of a clock from another subsystem.

Add an analog input channel to the data acquisition object to automatically share this system's scan
clock.

addinput(s, 'Dev1', 'ai0', 'Voltage');

Configure acquisition rate (samples/s) and acquisition duration in seconds.

s.Rate = 10000;
daqDuration = seconds(35);

Acquire data in the foreground.

[positionData, timestamps] = read(s, daqDuration, 'OutputFormat', 'Matrix');

 Measure Angular Position with an Incremental Rotary Encoder

18-109

By default, counter position readings are unsigned integer values. The counter channels of the DAQ
device used in this example are 32-bit, so any counter value read will be in the range 0 to 2^32-1.
Depending on the application, you may want to obtain signed position values (positive or negative) as
decrementing the counter value past zero is a discontinuous wraparound to 2^32-1.

For 32-bit counter channels, use 2^31 as the threshold counter value for conversion to signed
position values. The result is valid if the actual position value is in the range -2^31+1 to 2^31.

counterNBits = 32;
signedThreshold = 2^(counterNBits-1);
signedData = positionData(:,1);
signedData(signedData > signedThreshold) = signedData(signedData > signedThreshold) - 2^counterNBits;

Calculate encoder position data in degrees.

positionDataDeg = signedData * 360/encoderCPR;

Plot the signed angular position data acquired for the oscillatory motion of a pendulum.

figure
plot(timestamps, positionDataDeg);
xlabel('Time (s)');
ylabel('Angular position (deg.)');

Use the Z Signal to Reference the Relative Position to a Known Absolute Position

The A and B quadrature signals output by incremental rotary encoders provide only relative position
information (direction of motion and changes in position). The optional reference signal Z is a single

18 Data Acquisition Toolbox Examples

18-110

pulse output once per encoder shaft revolution at a predefined absolute location. Referencing the
relative position value to the known absolute position reference allows an incremental rotary encoder
to function as a pseudo-absolute position encoder. This is useful in accurate positioning applications
(such as industrial automation, robotics, solar tracking, radar antenna or telescope positioning).

For incremental rotary encoders that provide a Z index signal output, the counter position value can
be configured to be reset automatically to the known reference value.

Set the ZResetEnable and ZResetCondition properties.

ch1.ZResetEnable = true;

Configure the ZResetCondition, which is based on the A and B phase signals.

ch1.ZResetCondition = 'BothLow';

Specify the absolute reference position value ZResetValue to which the counter value will be reset.

ch1.ZResetValue = 0;

Acquire and plot a set of hardware-timed counter position data to show how you can use the encoder
Z index signal to automatically reset the counter value to a known reference value.

[positionData2, timestamps2] = read(s, daqDuration, 'OutputFormat', 'matrix');

figure
plot(timestamps2, positionData2(:,1));
xlabel('Time (s)');
ylabel('Counter value for quadrature encoder (counts)');

 Measure Angular Position with an Incremental Rotary Encoder

18-111

The acquired position data corresponds to a rotary encoder shaft that is rotating continuously. Notice
that before the first time the counter value is reset the position value is not referenced to an absolute
position, whereas the other counter reset events occur when the counter value is 2500 (the encoder
CPR value).

18 Data Acquisition Toolbox Examples

18-112

Control Stepper Motor Using Digital Outputs
This example shows how to control a stepper motor using digital output ports.

Discover Devices Supporting Digital Output

Use daqlist to discover devices. This example uses a National Instruments® ELVIS II with ID Dev2.

d = daqlist

d =

 12×5 table

 VendorID DeviceID Description Model DeviceInfo
 ________ ___________ __________________________________ _____________ ____________________

 "ni" "cDAQ1Mod1" "National Instruments NI 9205" "NI 9205" [1×1 daq.DeviceInfo]
 "ni" "cDAQ1Mod2" "National Instruments NI 9263" "NI 9263" [1×1 daq.DeviceInfo]
 "ni" "cDAQ1Mod3" "National Instruments NI 9234" "NI 9234" [1×1 daq.DeviceInfo]
 "ni" "cDAQ1Mod4" "National Instruments NI 9201" "NI 9201" [1×1 daq.DeviceInfo]
 "ni" "cDAQ1Mod5" "National Instruments NI 9402" "NI 9402" [1×1 daq.DeviceInfo]
 "ni" "cDAQ1Mod6" "National Instruments NI 9213" "NI 9213" [1×1 daq.DeviceInfo]
 "ni" "cDAQ1Mod7" "National Instruments NI 9219" "NI 9219" [1×1 daq.DeviceInfo]
 "ni" "cDAQ1Mod8" "National Instruments NI 9265" "NI 9265" [1×1 daq.DeviceInfo]
 "ni" "Dev1" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]
 "ni" "Dev2" "National Instruments NI ELVIS II" "NI ELVIS II" [1×1 daq.DeviceInfo]
 "ni" "Dev3" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]
 "ni" "Dev4" "National Instruments PCIe-6363" "PCIe-6363" [1×1 daq.DeviceInfo]

d{10, "DeviceInfo"}

ans =

ni: National Instruments NI ELVIS II (Device ID: 'Dev2')
 Analog input supports:
 7 ranges supported
 Rates from 0.0 to 1250000.0 scans/sec
 16 channels ('ai0' - 'ai15')
 'Voltage' measurement type

 Analog output supports:
 -5.0 to +5.0 Volts,-10 to +10 Volts ranges
 Rates from 0.0 to 2857142.9 scans/sec
 2 channels ('ao0','ao1')
 'Voltage' measurement type

 Digital IO supports:
 39 channels ('port0/line0' - 'port2/line6')
 'InputOnly','OutputOnly','Bidirectional' measurement types

 Counter input supports:
 Rates from 0.1 to 80000000.0 scans/sec
 2 channels ('ctr0','ctr1')
 'EdgeCount' measurement type

 Control Stepper Motor Using Digital Outputs

18-113

 Counter output supports:
 Rates from 0.1 to 80000000.0 scans/sec
 2 channels ('ctr0','ctr1')
 'PulseGeneration' measurement type

Hardware Setup Description

This example uses a Portescap 20M020D1U motor (5 V, 18 degree unipolar stepper). The TTL signals
produced by the digital I/O system are amplified by a Texas Instruments ULN2003AIN (high voltage,
high current Darlington transistor array), as shown in this schematic:

Add Digital Output-Only Channels

Create a DataAcquisition and add 4 digital channels on port 0, lines 0-3. Set the measurement type to
OutputOnly. These are connected to the 4 control lines for the stepper motor.

dq = daq("ni");
addoutput(dq,"Dev2","port0/line0:3","Digital")

Warning: Added channel does not support clocked sampling: clocked operations are
disabled. Only on-demand operations are allowed.

Define Motor Steps

Refer to the Portescap motor wiring diagram describing the sequence of 4-bit patterns. Send this
pattern sequentially to the motor to produce counterclockwise motion. Each step turns the motor 18
degrees. Each cycle of 4 steps turns the motor 72 degrees. Repeat this cycle five times to rotate the
motor 360 degrees.

18 Data Acquisition Toolbox Examples

18-114

step1 = [1 0 1 0];
step2 = [1 0 0 1];
step3 = [0 1 0 1];
step4 = [0 1 1 0];

Rotate Motor

Use write to output the sequence to turn the motor 72 degrees counterclockwise.

write(dq,step1);
write(dq,step2);
write(dq,step3);
write(dq,step4);

Repeat sequence 50 times to rotate the motor 10 times counterclockwise.

for motorstep = 1:50
 write(dq,step1);
 write(dq,step2);
 write(dq,step3);
 write(dq,step4);
end

To turn the motor 72 degrees clockwise, reverse the order of the steps.

write(dq,step4);
write(dq,step3);
write(dq,step2);
write(dq,step1);

Turn Off All Outputs

After you use the motor, turn off all the lines to allow the motor to rotate freely.

write(dq,[0 0 0 0]);

 Control Stepper Motor Using Digital Outputs

18-115

Communicate with I2C Devices and Analyze Bus Signals Using
Digital IO

Communicate with instruments and devices at the protocol layer as well as the physical layer. Use the
I2C feature of Instrument Control Toolbox to communicate with a TMP102 temperature sensor, and
simultaneously analyze the physical layer I2C bus communications using the clocked digital IO
feature of Data Acquisition Toolbox.

Data Acquisition Toolbox and Instrument Control Toolbox are required.

Hardware Configuration and Schematic

• Any supported National Instruments™ DAQ device with clocked DIO channels can be used (e.g.,
NI Elvis II)

• TotalPhase Aardvark I2C/SPI Host Adaptor
• TMP102 Digital Temperature Sensor with two-wire serial interface

The TMP102 requires a 3.3 V supply. Use a linear LDO (LP2950-33) to generate the 3.3 V supply from
the DAQ device's 5 V supply line.

Alternative options include:

• Use an external power supply.
• Use an analog output channel from your DAQ device.

Connect to a TMP102 Sensor Using I2C Host Adaptor and Read Temperature Data

Wire up the sensor and verify communication to it using the I2C object from Instrument Control
Toolbox.

aa = instrhwinfo('i2c', 'aardvark'); % Get information about connected I2C hosts
tmp102 = i2c('aardvark',0,hex2dec('48')); % Create an I2C object to connect to the TMP102

18 Data Acquisition Toolbox Examples

18-116

tmp102.PullupResistors = 'both'; % Use host adaptor pull-up resistors
fopen(tmp102); % Open the connection
data8 = fread(tmp102, 2, 'uint8'); % Read 2 byte data
% One LSB equals 0.0625 deg. C
temperature = ...
 (double(bitshift(int16(data8(1)), 4)) +...
 double(bitshift(int16(data8(2)), -4))) * 0.0625; % Refer to TMP102 data sheet to calculate temperature from received data
fprintf('The temperature recorded by the TMP102 sensor is: %s deg. C\n',num2str(temperature));
fclose(tmp102);

The temperature recorded by the TMP102 sensor is: 27.625 deg. C

Acquire the Corresponding I2C Physical Layer Signals Using a DAQ Device

Use oversampled clocked digital channels from the NI Elvis (Dev4) to acquire and analyze the
physical layer communications on the I2C bus.

Acquire SDA data on port 0, line 0 of your DAQ device. Acquire SCL data on port 0, line 1 of your
DAQ device.

dd = daq("ni");
addinput(dd,"Dev4","port0\line0","Digital"); % sda
addinput(dd,"Dev4","port0\line1","Digital"); % scl

Generate a Clock Signal for Use with the Digital Subsystem

Digital subsystems on NI DAQ devices do not have their own clock; they must share a clock with the
analog subsystem or import a clock from an external subsystem. Generate a 50% duty cycle clock at 1
MHz using a PulseGeneration counter output, and set the input scan rate to match.

pgChan = addoutput(dd,"Dev4","ctr1"),"PulseGeneration");
dd.Rate = 1e6;
pgChan.Frequency = dd.Rate;

The clock is generated on the 'pgChan.Terminal' pin, allowing synchronization with other devices and
viewing the clock on an oscilloscope. The counter output pulse signal is imported as a clock signal.

disp(pgChan.Terminal);
addclock(dd,"ScanClock","External",["Dev4/" pgChan.Terminal]);

PFI13

Acquire the I2C Signals Using Clocked Digital Channels

Acquire data in the background from the SDA and SCL digital lines.

• Start the DataAcquisition in background mode
• Start the I2C operations
• Stop the DataAcquisition after I2C operations are complete

start(dd, "continuous");
fopen(tmp102);
data8 = fread(tmp102, 2, "uint8");
% One LSB equals 0.0625 deg. C
temperature = (double(bitshift(int16(data8(1)), 4)) +...
 double(bitshift(int16(data8(2)), -4))) * 0.0625;
fclose(tmp102);

 Communicate with I2C Devices and Analyze Bus Signals Using Digital IO

18-117

pause(0.1);
stop(dd);
myData = read(dd, "all");

Warning: Triggers and Clocks will not affect counter output channels.

Plot the raw data to see the acquired signals. Notice that lines are held high during idle periods. The
next section shows how to find the start/stop condition bits and use them to isolate areas of interest
in the I2C communication.

figure("Name", "Raw Data");
subplot(2,1,1);

plot(myData(:,1));
ylim([-0.2, 1.2]);
ax = gca;
ax.YTick = [0,1];
ax.YTickLabel = {'Low','High'};
title("Serial Data (SDA)");
subplot(2,1,2);
plot(myData(:,2));
ylim([-0.2, 1.2]);
ax = gca;
ax.YTick = [0,1];
ax.YTickLabel = {'Low','High'};
title("Serial Clock (SCL)");

18 Data Acquisition Toolbox Examples

18-118

Analyze the I2C Physical Layer Bus Communications

Extract I2C physical layer signals on the SDA and SCL lines.

sda = myData(:,1)';
scl = myData(:,2)';

Find all rising and falling clock edges.

sclFlips = xor(scl(1:end-1), scl(2:end));
sclFlips = [1 sclFlips 1];
sclFlipIndexes = find(sclFlips==1);

Calculate the clock periods from the clock indices

sclFlipPeriods = sclFlipIndexes(1:end)-[1 sclFlipIndexes(1:end-1)];

Through inspection, observe that idle periods have SCL high for longer than 100 us. Since scan rate
= 1MS/s, each sample represents 1 us. idlePeriodIndices indicate periods periods of activity
within the I2C communication.

idlePeriodIndices = find(sclFlipPeriods>100);

Zoom into the first period of activity on the I2C bus. For ease of viewing, include 30 samples of idle
activity to the front and end of each plot.

range1 = sclFlipIndexes(idlePeriodIndices(1)) - 30 : sclFlipIndexes(idlePeriodIndices(2) - 1) + 30;
figure("Name", "I2C Communication Data");
subplot(2,1,1);
plot(sda(range1));
ylim([-0.2, 1.2]);
ax = gca;
ax.YTick = [0,1];
ax.YTickLabel = {'Low','High'};
title("Serial Data (SDA)");
subplot(2,1,2);
plot(scl(range1));
ylim([-0.2, 1.2]);
ax = gca;
ax.YTick = [0,1];
ax.YTickLabel = {'Low','High'};
title("Serial Clock (SCL)");

 Communicate with I2C Devices and Analyze Bus Signals Using Digital IO

18-119

Analyze Bus Performance Metrics

As a simple example analyze start and stop condition metrics, and I2C bit rate calculation.

• Start condition duration is defined as the time it takes for SCL to go low after SDA goes low.
• Stop condition duration is defined as the time it takes for SDA to go high after SCL goes high.
• Bit rate is calculated by taking the inverse of the time between 2 rising clock edges.

Start Condition: First SDA low, then SCL low

sclLowIndex = sclFlipIndexes(idlePeriodIndices(1));
sdaLowIndex = find(sda(1:sclLowIndex)==1, 1, "last") + 1; % +1, flip is next value after last high
startConditionDuration = (sclLowIndex - sdaLowIndex) * 1/s.Rate;

fprintf('sda: %s\n', sprintf('%d ', sda(sdaLowIndex-1:sclLowIndex))); % Indexes point to next change, hence sclLowIndex includes flip to low
fprintf('scl: %s\n', sprintf('%d ', scl(sdaLowIndex-1:sclLowIndex))); % subtract 1 from sdaLowIndex to see sda value prior to flip
fprintf('Start condition duration: %d sec.\n\n', startConditionDuration); % count 5 pulses, 5 us.

sda: 1 0 0 0 0 0 0
scl: 1 1 1 1 1 1 0
Start condition duration: 5.000000e-06 sec.

Stop Condition: First SCL high, then SDA high

% flip prior to going into idle is the one we want
sclHighIndex = sclFlipIndexes(idlePeriodIndices(2)-1);

18 Data Acquisition Toolbox Examples

18-120

sdaHighIndex = find(sda(sclHighIndex:end)==1, 1, 'first') + sclHighIndex - 1;
stopConditionDuration = (sdaHighIndex - sclHighIndex) * 1/s.Rate;

fprintf('sda: %s\n', sprintf('%d ',sda(sclHighIndex-1:sdaHighIndex)));
fprintf('scl: %s\n', sprintf('%d ',scl(sclHighIndex-1:sdaHighIndex)));
fprintf('Stop condition duration: %d sec.\n\n', stopConditionDuration);

sda: 0 0 0 0 0 0 1
scl: 0 1 1 1 1 1 1
Stop condition duration: 5.000000e-06 sec.

Bit Rate: Inverse of time between 2 rising edges on the SCL line

startConditionIndex = idlePeriodIndices(1);
firstRisingClockIndex = startConditionIndex + 2;
secondRisingClockIndex = firstRisingClockIndex + 2;
clockPeriodInSamples = sclFlipIndexes(secondRisingClockIndex) - sclFlipIndexes(firstRisingClockIndex);
clockPeriodInSeconds = clockPeriodInSamples * 1/s.Rate;
bitRate = 1/clockPeriodInSeconds;

fprintf('DAQ calculated bit rate = %d; Actual I2C object bit rate = %dKHz\n', ...
 bitRate,...
 tmp102.BitRate);

DAQ calculated bit rate = 1.000000e+05; Actual I2C object bit rate = 100KHz

Find the Bit Stream by Sampling on the Rising Edges

The sclFlipIndexes vector was created using XOR and hence contains both rising and falling
edges. Start with a rising edge and use a step of two to skip falling edges.

% idlePeriodIndices(1)+1 is first rising clock edge after start condition.
% Use a step of two to skip falling edges and only look at rising edges.
% idlePeriodIndices(2)-1 is the index of the rising edge of the stop condition.
% idlePeriodIndices(2)-3 is the last rising clock edge in the bit stream to be
% decoded.
bitStream = sda(sclFlipIndexes(idlePeriodIndices(1)+1:2:idlePeriodIndices(2)-3));
fprintf('Raw bit stream extracted from I2C physical layer signal: %s\n\n', sprintf('%d ', bitStream));

Raw bit stream extracted from I2C physical layer signal: 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1

Decode the Acquired Bit Stream

ADR_RW = {'W', 'R'};
ACK_NACK = {'ACK', 'NACK'};
address = bitStream(1:7); % 7 bit address
fprintf('\nDecoded Address: %d%d%d%d%d%d%d(0x%s) %d(%s) %d(%s)\n', ...
 address,...
 binaryVectorToHex(address),...
 bitStream(8),...
 ADR_RW{bitStream(8)+1},...
 bitStream(9),...
 ACK_NACK{bitStream(9)+1});
for iData = 0:1
 startBit = 10 + iData*9;
 endBit = startBit + 7;
 ackBit = endBit + 1;

 Communicate with I2C Devices and Analyze Bus Signals Using Digital IO

18-121

 data = bitStream(startBit:endBit);
 fprintf('Decoded Data%d: %s(0x%s) %d(%s)\n', ...
 iData+1,...
 sprintf('%d', data),...
 binaryVectorToHex(data),...
 bitStream(ackBit),...
 ACK_NACK{bitStream(ackBit)+1});
end

Decoded Address: 1001000(0x48) 1(R) 0(ACK)
Decoded Data1: 00011011(0x1B) 0(ACK)
Decoded Data2: 10100000(0xA0) 1(NACK)

Verify That the Decoded Data Using DAQ Matches the Data Read Using ICT

Two uint8 bytes were read, using fread, from the I2C bus into variable data8. The hex conversion
of these values should match the results of the bus decode shown above.

fprintf('Data acquired from I2C object: 0x%s\n', dec2hex(data8)');
fprintf('Temperature: %2.2f deg. C\n\n', temperature);

Data acquired from I2C object: 0x1BA0
Temperature: 27.63 deg. C

18 Data Acquisition Toolbox Examples

18-122

Synchronize NI PCI Devices Using RTSI
This example shows how to acquire synchronized data from two PCI devices. A sine wave is
connected to channel 0 of NI PCI-6251 and to channel 0 of NI PCIe-6363. Synchronized operation is
verified by demonstrating zero phase lag between the acquired signals.

Create DataAcquisition and Add Analog Input Channel

Create a DataAcquisition and add analog input voltage input channels from NI PCI-6251 and NI
PCIe-6363 devices.

dd = daq("ni");
addinput(dd,"Dev3","ai0","Voltage");
addinput(dd,"Dev4","ai0","Voltage");

Acquire Unsynchronized Data

Use the read command to start the acquisition.

[data,time] = read(dd,seconds(1),"OutputFormat","Matrix");
plot(time, data)

There is a small phase lag between the two channel inputs. The DataAcquisition starts the two
channels close together, but the devices do not share any clock and trigger information and therefore
are not fully synchronized.

 Synchronize NI PCI Devices Using RTSI

18-123

Set Up Hardware Connections

Connect PCI devices using a RTSI® (Real-Time System Integration) cable and register it in
Measurement & Automation Explorer®. To synchronize the acquisition, share a scan clock and start
trigger between the two devices.

Choose Source and Destination Devices

The device that provides the control and timing signals is called the source device, and the device
that receives these signals is called destination device. In this example, Dev3 is the source device and
Dev4 is the destination device.

Add Start Trigger

The RTSI cable creates a physical connection between the RTSI0 terminal on Dev3 and RTSI0
terminal on Dev4. Use this connection to share the start trigger between the source and destination
devices.

Use addtrigger to add a digital start trigger from 'RTSI0/PFI3' (source) to 'RTSI0/Dev4'
(destination).

addtrigger(dd,"Digital","StartTrigger","Dev3/RTSI0","Dev4/RTSI0");

Add Scan Clock

Use addclock to share a scan clock using the RTSI1 terminal connection.

addclock(dd,"ScanClock","Dev3/RTSI1","Dev4/RTSI1");

Acquire Data with Synchronization

Use read to acquire data.

[data,time] = read(dd,seconds(1));
plot(time,data)

18 Data Acquisition Toolbox Examples

18-124

The two sine waves are overlapping with zero phase lag, confirming that the devices are fully
synchronized.

 Synchronize NI PCI Devices Using RTSI

18-125

Start a Multi-Trigger Acquisition on an External Event
This example shows how to set up and start a multi-trigger acquisition on an external event. In this
instance, the device is configured to start acquiring data on a rising edge signal.

Create a DataAcquisition and Add Analog Input Channels

Create a DataAcquisition object, and add an analog input channel with the Voltage measurement
type, using an NI PCIe 6363, with ID Dev4.

dq = daq("ni");
addinput(dq,"Dev4","ai0","Voltage");

Configure the DataAcquisition to Start on an External Trigger

Configure the device to acquire data on the external trigger. A trigger that starts an acquisition is
called a Start Trigger. In this example, the switch is wired to terminal PFI0 on device Dev4.
Represent this physical connection (between the switch and terminal PFI0) as a start trigger.

Add Digital Start Trigger

A trigger has a trigger type (Digital). The allowed value for the Digital trigger type is
StartTrigger.

A trigger has a source and a destination. In this example, the source is the switch (choose
'External' as the source). The destination is the PFI0 terminal on Dev4 ('PFI0/Dev4'). Use
addtrigger to add this trigger on the DataAcquisition.

addtrigger(dq,"Digital","StartTrigger","External","Dev4/PFI0");
dq.DigitalTriggers

ans =

 DigitalTrigger with properties:

 Source: "External"
 Destination: 'Dev4/PFI0'
 Type: 'StartTrigger'
 Condition: 'RisingEdge'

Set Trigger Parameters

By default the DataAcquisition waits for 10 seconds for the rising edge digital trigger. Increase the
timeout to 30 seconds using DigitalTriggerTimeout property.

dq.DigitalTriggerTimeout = 30;

You can configure a DataAcquisition to receive multiple triggers, when it should respond to multiple
events. In this example, two external trigger signals are expected, enabling the device Dev4 to start
acquiring scans on receipt of the second trigger.

dq.NumDigitalTriggersPerRun = 2;

18 Data Acquisition Toolbox Examples

18-126

Start the Acquisition

Use read to acquire scans on receipt of each configured digital start trigger. The specific sequence of
events is:

1 The DataAcquisition starts
2 One second of actual acquisition begins on receipt of the first trigger unless the timeout period

expires
3 One second of actual acquisition begins on receipt of the second trigger unless the timeout

period expires
4 Data is returned

[data, startTime] = read(dq, seconds(1));

Plot the Data

Observe the discontinuity based on the time between the two trigger starts.

plot(data.Time, data.Variables, '.')

 Start a Multi-Trigger Acquisition on an External Event

18-127

Perform Live Acquisition, Signal Processing, and Generation
This example shows how to use the Analog Input block to acquire live analog data from a data
acquisition device into Simulink. The acquired data is processed in Simulink and uses the Analog
Output block to output data to a data acquisition device. It shows how a Simulink model can
communicate with different subsystems in the same model. In this case, the data acquisition device
used is from National Instruments®.

Note: This example requires MATLAB®, Data Acquisition Toolbox, and Simulink to open and run the
model.

Live Data Input

The input signal is acquired from a National Instruments data acquisition device (USB-6211). Signal
is acquired from channel ai0 at the rate of 8000 samples/second. The Analog Input block is
configured to do synchronous acquisition, which does blocking read from the device and at each
timestep it acquires a chunk of 1600 samples from the hardware.

Note: Each column in the output of Analog Input block corresponds to data from an analog input
channel. To correctly interpret the data, in the downstream processing/visualization blocks, you need
to use 'Columns as Channels (frame-based)' as Input Processing method.

18 Data Acquisition Toolbox Examples

18-128

Signal Processing

The acquired data is processed using a discrete filter. The discrete filter uses pre-computed
coefficients to implement a bandpass filter with a bandwidth of 50Hz around 100Hz and an
attenuation of 60dB elsewhere, for input signals sampled at 8kHz. To design digital filters, to select
specific implementation structures, use blocks from the "Filtering" library in DSP System Toolbox.
The capture data has three major frequency components: sine waves at 100Hz, 500Hz and 1000Hz.
After the discrete filter, you would see a clear 100Hz sine wave in the output. A plot of the input and
the filtered signals are shown below.

Live Data Output

The processed data is output to a single channel of a National Instruments device (PCI-6211) at a rate
of 8000 samples/second.

Even though a National Instruments device was used for this example, this model can be easily
updated to connect to other supported data acquisition devices. This provides you the flexibility to
reuse the same Simulink model with different data acquisition hardware.

 Perform Live Acquisition, Signal Processing, and Generation

18-129

Perform Spectral Analysis on Live Data
This example shows how to use the Analog Input block to acquire live signals from a data acquisition
device into Simulink. The block uses a National Instruments(R) USB-6211 as the input device. The
Simulink model uses a spectrum estimator to output a power spectrum estimate of a time-domain
input using Welch's method of averaged modified periodograms.

Note: This example requires MATLAB®, Simulink, Data Acquisition Toolbox and DSP System
Toolbox™ to open and run the model.

Data Acquisition and Processing

The input signal is a real-time analog signal sampled at 10000 samples per second. The Analog Input
block is configured to do asynchronous acquisition, which buffers the data from the analog channels
and streams the buffered data to Simulink. Each timestep, the Analog Input block outputs a chunk of
1024 samples. Each chunk of data is processed by a Spectrum Estimator to calculate the power
spectrum. You can adjust the settings in the Spectrum Estimator such as different window functions.

In this example the captured signal contains three major frequency components: sine waves at 50Hz,
250Hz, and 500Hz. The time domain signal, frequency domain signal from Spectrum Analyzer, and
the one-side power spectrum estimate by spectrum estimator are shown below.

18 Data Acquisition Toolbox Examples

18-130

 Perform Spectral Analysis on Live Data

18-131

18 Data Acquisition Toolbox Examples

18-132

Even though a National Instruments device was used for this example, this model can be easily
updated to connect to other supported data acquisition devices. This provides you the flexibility to
reuse the same Simulink model with different data acquisition hardware.

 Perform Spectral Analysis on Live Data

18-133

Acquire Data from Two Devices at Different Rates
This example shows how to acquire data from two different DAQ devices running at different
sampling rates. The example uses two National Instruments CompactDAQ analog input modules
(9201 and 9211) that have different acquisition rate limits. The 9211 module is used for temperature
measurements and acquires at a slower rate (10 Hz) than the 9201 module, which is used to measure
voltage (100 Hz). Since all channels in a data acquisition object must acquire at the same rate, to
acquire from two modules at multiple rates you need to use two data acquisition objects. To make
both DAQ devices start simultaneously, you can use a hardware digital triggering configuration.

Hardware Setup

• CompactDAQ chassis NI cDAQ 9178 ('cDAQ1')
• NI cDAQ 9211 module with thermocouple measurement type ('cDAQ1Mod1')
• NI cDAQ 9201 module with voltage measurement type ('cDAQ1Mod2')
• Thermocouple probe (type K)
• Analog voltage signal generated by a function generator instrument

Configure Data Acquisition Objects and Channels

Create two data acquisition objects, each with one analog input channel from a 9211 module or 9201
module. The data acquisition objects acquire data at rates of 10 Hz and 100 Hz, respectively.

% Specify a common acquisition duration for both devices, in seconds
daqDuration = 3;

% Create and configure DataAcquisition object and channels for cDAQ 9211 module
d1 = daq('ni');
addinput(d1, 'cDAQ1Mod1', 'ai0', 'Thermocouple');
d1.Channels(1).ThermocoupleType = 'K';
d1.Rate = 10;

Warning: The Rate property was reduced to 14.2857 due to changes in the channel
configuration.

% Create and configure DataAcquisition object and channels for cDAQ 9201 module
d2 = daq('ni');
addinput(d2, 'cDAQ1Mod2', 'ai0', 'Voltage');
d2.Rate = 100;

Configure Trigger Connections

To synchronize the acquisition start you can use hardware triggering and a master/slave approach.
One of the data acquisition objects (master) is started manually and triggers the acquisition start of
the other data acquisition object (slave).

Note: If you have a CompactDAQ chassis model (such as NI 9174) which does not have PFI triggering
terminals, you can use an additional digital I/O module (such as NI 9402) to provide the PFI terminals
for the trigger connections.

% Configure the master data acquisition object to export a triggering
% signal on the PFI0 terminal of cDAQ1 chassis
addtrigger(d1, 'Digital', 'StartTrigger', 'cDAQ1/PFI0', 'External');

% Configure the slave data acquisition object to start acquisition when an

18 Data Acquisition Toolbox Examples

18-134

% external triggering signal is received at PFI0 terminal of cDAQ1 chassis
addtrigger(d2, 'Digital', 'StartTrigger', 'External', 'cDAQ1/PFI0');

Start Acquisition and Wait Until Complete

The slave data acquisition object must start first and be ready for an external trigger before the
master data acquisition object starts.

start(d2, 'Duration', daqDuration)
while ~d2.WaitingForDigitalTrigger
 pause(0.1)
end
start(d1, 'Duration', daqDuration)

% Wait until data acquisition is complete
while d1.Running || d2.Running
 pause(1)
end

Background operation has started.
Background operation will stop after 3 s.
To read acquired scans, use read.
Background operation has started.
Background operation will stop after 3 s.
To read acquired scans, use read.

Save Data as Timetable

For each data acquisition object, the acquired measurement data and timestamps were stored in
memory. Read all acquired data from memory in the default timetable format.

data1 = read(d1, 'all');
data2 = read(d2, 'all');

Plot Acquired Data

Since the acquired data from the two devices have different scales and units, create a chart with two
y-axes.

figure
yyaxis left
plot(data1.Time, data1.Variables, '-x')
ylabel('Temperature (deg. C)')
ylim([0 50])
yyaxis right
plot(data2.Time, data2.Variables, '-o')
ylabel('Voltage (V)')
xlabel('Time (s)')

 Acquire Data from Two Devices at Different Rates

18-135

Clean Up

Clear the data acquisition objects to disconnect from hardware.

clear d1 d2

18 Data Acquisition Toolbox Examples

18-136

Characterize an LED with ADALM1000
This example shows how to use MATLAB to connect to an Analog Devices ADALM1000 source-
measurement unit, configure it, and make current and voltage measurements to characterize an LED.

Discover Supported Data Acquisition Devices Connected to Your System

daqlist

ans=1×5 table
 VendorID DeviceID Description Model DeviceInfo
 ________ ________ _______________________________ ___________ ________________________

 "adi" "SMU1" "Analog Devices Inc. ADALM1000" "ADALM1000" [1×1 daq.adi.DeviceInfo]

Create a DataAcquisition Interface for the ADALM1000 Device

ADIDaq = daq("adi");

Add Channels for Sourcing Voltage and Measuring Current

The ADALM1000 device is capable of sourcing voltage and measuring current simultaneously on the
same channel. Set up the device in this mode.

Add an analog output channel with device ID SMU1 and channel ID A, and set its measurement type
to voltage.

addoutput(ADIDaq,'smu1','a','Voltage');

Add an analog input channel with device ID SMU1 and channel ID A, and set its measurement type to
current.

addinput(ADIDaq,'smu1','a','Current');

Confirm the configuration of the channels.

ADIDaq.Channels

ans=1×2 object
 Index Type Device Channel Measurement Type Range Name
 _____ ____ ______ _______ _____________________ __________________ __________

 1 "ao" "SMU1" "A" "Voltage (SingleEnd)" "0 to +5.0 Volts" "SMU1_A"
 2 "ai" "SMU1" "A" "Current" "-0.20 to +0.20 A" "SMU1_A_1"

Blink Attached LED Five Times

Connect an LED in series with a 330-Ω resistor between the ADALM1000 channel A and ground.
Alternately apply 5 V and 0 V.

for iLoop = 1:5
 % Turn on LED by generating an output of 5 volts.
 write(ADIDaq,5);
 pause(0.2);
 % Turn off LED by generating an output of 0 volts.
 write(ADIDaq,0);

 Characterize an LED with ADALM1000

18-137

 pause(0.2);
end

Characterize the LED

To understand the LED's I-V characteristics, sweep a range of voltage values from 0 V to 5 V, and
measure the current for each value. The aggregate of all measurements provides data to graph the
current across the LED over a range of voltages.

v = linspace(0,5,250)';
i = readwrite(ADIDaq,v,"OutputFormat","Matrix");

Plot the Characteristic Curve of the LED and Estimate a Mathematical Model

When you have the measured data, you can visualize it. You can also calculate a mathematical model
that approximates the behavior of the LED within the range of the measurements.

% Plot the measured data.
plot(v,i,'LineWidth',2);
hold on;
grid on;
ylabel('I (amperes)');
xlabel('V (volts)');
title({'I-V Characteristic Curve of LED';'and fifth-order polynomial approximation.'});

Fit the data using a fifth-order polynomial and overlay the acquired data with the model of the LED
approximated by a fifth-order polynomial.

approxPoly = polyfit(v,i,5);

Plot the approximated data.

plot(v,polyval(approxPoly,v),'-k','Linewidth',1);

18 Data Acquisition Toolbox Examples

18-138

Calculate the Voltage at Which the LED Turns On

Based on the fifth-order polynomial approximation, you can find a first-order approximation that
represents the linearly increasing portion of the curve. The voltage at which the LED turns on is
approximately where this line intersects the voltage axis.

Find the line that passes through the linear portion of the signal.

normErr = -1;
errThreshold = 0.001;
numPointsForLine = numel(v) - 10;
while (numPointsForLine > 0) && (normErr < errThreshold)
 approximation = polyval(approxPoly,v(numPointsForLine:end));
 [linearPoly, errorStruct] = polyfit(v(numPointsForLine:end),approximation, 1);
 numPointsForLine = numPointsForLine - 5;
 normErr = errorStruct.normr;
end

Evaluate the linear polynomial over the range of measurements. The value where this intersects the
horizontal line representing any leakage current is the voltage at which the LED turns on.

LEDThreshold = 1.2;
leakageCurrent = mean(i(v<LEDThreshold));
linearIV = polyval(linearPoly,v);
minIndex = sum(linearIV<leakageCurrent);

Plot the linear portion of the curve.

 Characterize an LED with ADALM1000

18-139

plot(v(minIndex-1:end),polyval(linearPoly,v(minIndex-1:end)),'Magenta','Linewidth',2,'LineStyle','--')

Circle the approximate voltage at which the LED turns on.

plot(v(minIndex),leakageCurrent,'o','Linewidth',2,'MarkerSize',20,'MarkerEdgeColor','Red')
title(sprintf('Calculated Voltage at Which LED Turns On: %1.2fV',v(minIndex)));

Turn Off the LED and Clear the DataAcquisition

write(ADIDaq,0);
close
clear ADIDaq

18 Data Acquisition Toolbox Examples

18-140

Estimate the Transfer Function of a Circuit with ADALM1000
This example shows how to use MATLAB to connect to an ADALM1000 source-measurement unit,
configure it to generate an arbitrary signal, make live measurements, and use the measurements to
calculate the transfer function of the connected circuit.

Introduction

In this example you have an R-C circuit consisting of a 1 kΩ resistor in series with a 0.1 μF capacitor.
The R-C circuit is attached to the ADALM1000 device with Channel A of the device providing the
voltage stimulus consisting of a chirp signal. The output of Channel A is connected to the resistor, and
the ground is connected to the capacitor. Channel B of the device is used to measure the voltage
across the capacitor. The following circuit diagram shows the measurement setup.

You can use the stimulus and the measured waveforms to estimate the transfer function of the R-C
circuit, and compare the measured response to the theoretical response of the R-C circuit.

Discover Devices Connected to Your System

daqlist("adi")

ans=1×4 table
 DeviceID Description Model DeviceInfo
 ________ _______________________________ ___________ ________________________

 "SMU1" "Analog Devices Inc. ADALM1000" "ADALM1000" [1×1 daq.adi.DeviceInfo]

Create a DataAcquisition for the ADALM1000 Device

ADIDaq = daq("adi")

ADIDaq =
DataAcquisition using Analog Devices Inc. hardware:

 Running: 0
 Rate: 100000
 NumScansAvailable: 0
 NumScansAcquired: 0
 NumScansQueued: 0

 Estimate the Transfer Function of a Circuit with ADALM1000

18-141

 NumScansOutputByHardware: 0
 RateLimit: []

Show channels
Show properties and methods

Add Voltage Source and Measurement Channels

The ADALM1000 device is capable of sourcing and measuring voltage simultaneously on separate
channels. Set up the device in this mode.

To source voltage, add an analog output channel with device ID SMU1 and channel ID A, and set its
measurement type to Voltage.

addoutput(ADIDaq,'smu1','a','Voltage');

To measure voltage, add an analog input channel with device ID SMU1 and channel ID B, and set its
measurement type to Voltage.

addinput(ADIDaq,'smu1','b','Voltage');

Confirm the configuration of the channels.

ADIDaq.Channels

ans=1×2 object
 Index Type Device Channel Measurement Type Range Name
 _____ ____ ______ _______ _____________________ _________________ ________

 1 "ao" "SMU1" "A" "Voltage (SingleEnd)" "0 to +5.0 Volts" "SMU1_A"
 2 "ai" "SMU1" "B" "Voltage (SingleEnd)" "0 to +5.0 Volts" "SMU1_B"

Define and Visualize a Chirp Waveform for Stimulating the Circuit

Use a chirp waveform of 1 volt amplitude, ranging in frequency from 20 Hz to 20 kHz for stimulating
the circuit. The chirp occurs in a period of 1 second.

Fs = ADIDaq.Rate;
T = 0:1/Fs:1;
ExcitationSignal = chirp(T,20,1,20e3,'linear');

Add a DC offset of 2 V to ensure that the output voltage of the device is always above 0 V.

Offset = 2;
ExcitationSignal = ExcitationSignal + Offset;

Visualize the stimulus signal in the time-domain.

figure(1)
plot(T, ExcitationSignal,'Blue')
xlim([0 0.15])
xlabel('Time (s)')
ylabel('Magnitude (V)')
title('Time domain plot of stimulus signal')

18 Data Acquisition Toolbox Examples

18-142

Visualize the stimulus signal in the frequency domain.

figure(2)
spectrogram(ExcitationSignal,1024,1000,1024,Fs,'yaxis')
title('Frequency domain view of stimulus signal')

 Estimate the Transfer Function of a Circuit with ADALM1000

18-143

Stimulate the Circuit and Simultaneously Measure the Frequency Response

Generate device output and measure measure the voltage across the capacitor at the same time on
the other channel.

MeasuredTable = readwrite(ADIDaq,ExcitationSignal');
MeasuredSignal = MeasuredTable{:,1};

Plot the Stimulus and the Measured Signals

figure(1)
hold on;
plot(T,MeasuredSignal,'Red');
xlim([0 0.15])
ylim([1 3])
title('Time domain plot of stimulus and measured signal')
legend('Excitation Signal','Measured Signal')

18 Data Acquisition Toolbox Examples

18-144

figure(3)
spectrogram(MeasuredSignal,1024,1000,1024,Fs,'yaxis')
title('Frequency domain view of the the measured signal')

 Estimate the Transfer Function of a Circuit with ADALM1000

18-145

Calculate the Transfer Function of the Circuit

Compare the measured signal and the stimulus signal to calculate the transfer function of the R-C
circuit, and plot the magnitude response.

Remove DC offset before processing.

MeasuredSignal = MeasuredSignal - mean(MeasuredSignal);
ExcitationSignal = ExcitationSignal - Offset;
[TFxy,Freq] = tfestimate(ExcitationSignal,MeasuredSignal,[],[],[],Fs);
Mag = abs(TFxy);

Compare the estimated transfer function to the theoretical magnitude response.

R = 1000; % Resistance (ohms)
C = 0.1e-6; % Capacitance (farads)
TFMagTheory = abs(1./(1 + (1i*2*pi*Freq*C*R)));

figure(4);
semilogy(Freq,TFMagTheory,Freq,Mag);
xlim([0 20e3])
xlabel('Frequency (Hz)')
ylim([0.05 1.1])
ylabel('Magnitude')
grid on
legend('Theoretical frequency response','Measured frequency response')
title({'Magnitude response of the theoretical'; 'and estimated transfer functions'});

18 Data Acquisition Toolbox Examples

18-146

Clear the DataAcquisition and Figures

clear ADIDaq
close all

 Estimate the Transfer Function of a Circuit with ADALM1000

18-147

Create an App for Analog Triggered Data Acquisition
This example shows how to create an analog-triggered data acquisition app by using Data Acquisition
Toolbox™ and App Designer.

Data Acquisition Toolbox provides functionality for acquiring measurement data from a DAQ device or
audio sound card. For certain applications, an analog-triggered acquisition that starts capturing or
logging data based on a condition in the analog signal being measured is recommended. Software-
analog triggered acquisition enables you to capture only a segment of interest out of a continuous
stream of measurement data. For example, you can capture an audio recording when the signal level
passes a certain threshold.

This example app shows how to implement these operations:

• Discover available DAQ devices and select which device to use.
• Configure device acquisition parameters.
• Display a live plot in the app UI during acquisition.
• Perform a triggered data capture based on a programmable trigger condition.
• Save captured data to a MATLAB® base workspace variable.
• Control the operating modes of the app by defining app states in code.

By default, the app will open in design mode in App Designer. To run the app click the Run button or
execute the app from the command line:

AnalogTriggerApp

18 Data Acquisition Toolbox Examples

18-148

Requirements

This example app requires:

• MATLAB R2020a or later.
• Data Acquisition Toolbox.
• A supported DAQ device or sound card. For example, any National Instruments or Measurement

Computing device that supports analog input Voltage or IEPE measurements and background
acquisition.

• Corresponding hardware support package and device drivers.

Analog Trigger Condition

The analog trigger capture is specified by the trigger level, trigger condition, trigger delay, and
capture duration which are defined as in the figure below. A negative trigger delay means pre-trigger
data will be captured.

Controlling the App Operation

When creating an app that has complex logic, consider the various states that correspond to the
operating modes of the app. For this app, the app logic is implemented in MATLAB code and the
following app states are used:

• DeviceSelection

 Create an App for Analog Triggered Data Acquisition

18-149

• Configuration
• Acquisition (Buffering, ReadyForCapture, Capture, LookingForTrigger, CapturingData,

CaptureComplete)

You can use a Stateflow chart to visualize, organize, and control the app states as illustrated in the
"Analog Trigger App by Using Stateflow Charts" example.

18 Data Acquisition Toolbox Examples

18-150

Create an App for Analog Triggered Data Acquisition by Using
Stateflow Charts

This example shows how to create an analog-triggered data acquisition app by using Stateflow®,
Data Acquisition Toolbox™, and App Designer.

Data Acquisition Toolbox provides functionality for acquiring measurement data from a DAQ device or
audio soundcard. For certain applications, an analog-triggered acquisition that starts capturing or
logging data based on a condition in the analog signal being measured is recommended. Software-
analog triggered acquisition enables you to capture only a segment of interest out of a continuous
stream of measurement data. For example, you can capture an audio recording when the signal level
passes a certain threshold.

This example app, created by using App Designer and Stateflow, shows how to implement these
operations:

• Control the app state logic by using a Stateflow chart.
• Discover available DAQ devices and select which device to use.
• Configure device acquisition parameters.
• Display a live plot in the app UI during acquisition.
• Perform a triggered data capture based on a programmable trigger condition.
• Save captured data to a MATLAB® base workspace variable.

 Create an App for Analog Triggered Data Acquisition by Using Stateflow Charts

18-151

By default, the app opens in design mode in App Designer. To run the app click the Run button or
execute the app from the command line:

AnalogTriggerAppStateflow

Requirements

This example app requires:

• MATLAB R2020a or later.
• Data Acquisition Toolbox (supported on Windows® only).
• Stateflow (for creating and editing charts only).
• A supported DAQ device or sound card. For example, any National Instruments or Measurement

Computing device that supports analog input Voltage or IEPE measurements and background
acquisition.

• Corresponding hardware support package and device drivers.

App States and the Stateflow Chart

When creating an app that has complex logic, consider the various states that correspond to the
operating modes of the app. You can use a Stateflow chart to visualize and organize these app states.
Use transitions between states to implement the control logic of your app. For example, the file
AnalogTriggerAppLogic.sfx defines the Stateflow chart that controls the logic for this app. The
chart can transition between states based on an action in the app UI or on a data-driven condition.
For example, if you click the Start button, the chart transitions from the Configuration state to the
Acquisition state. If the value of the signal crosses the specified trigger level, the chart transitions
from the LookingForTrigger state to the CapturingData state.

18 Data Acquisition Toolbox Examples

18-152

Integrating the App with the Stateflow Chart

To establish a bidirectional connection between the MATLAB app and the Stateflow chart, in the
startupFcn function of your app, create a chart object and store its handle in an app property.

app.Chart = AnalogTriggerAppLogic('app',app);

The app uses this handle to trigger state transitions in the chart. For example, when you click Start,
the StartButtonPushed app callback function calls the acquisitionStart input event for the
chart. This event triggers the transition from the Configuration state to the Acquisition state.

To evaluate transition conditions that are not events in the chart, the app calls the step function for
the chart object. For example, while acquiring data from the device, the dataAvailable_Callback

 Create an App for Analog Triggered Data Acquisition by Using Stateflow Charts

18-153

app function periodically calls the step function. When the trigger condition is detected, the chart
transitions from the LookingForTrigger State to the CapturingData state.

In the Stateflow chart, store the app object handle as chart local data. To share public properties and
call public functions of the app, the Stateflow chart can use this handle in state actions, transition
conditions, or transition actions.

18 Data Acquisition Toolbox Examples

18-154

Create an App for Live Data Acquisition
This example shows how to create an app which acquires data from a DAQ device or sound card,
displays a live data view, and logs data to a MAT-file.

This example app shows how to implement these operations:

• Discover available DAQ devices and select which device to use.
• Configure device acquisition parameters.
• Display a live plot in the app UI during acquisition.
• Save acquired data to a MAT-file by writing to an intermediate binary file during acquisition.

By default, the app will open in design mode in App Designer. To run the app click Run or execute the
app from the command line:

LiveDataAcquisition

Requirements

This example app requires:

 Create an App for Live Data Acquisition

18-155

• MATLAB® R2020a or later.
• Data Acquisition Toolbox™.
• Corresponding hardware support package for your device vendor.
• A supported DAQ device or sound card. For example, any National Instruments or Measurement

Computing device that supports analog input Voltage or IEPE measurements and background
acquisition.

18 Data Acquisition Toolbox Examples

18-156

Acquire Data Using NI FieldDAQ Device
This example shows how to acquire data from an NI FieldDAQ device.

Discover Analog Input Devices

To discover a device that supports input measurements, access the device in the table returned by the
daqlist command. This example uses a NI FD-11603 device. This device has two banks, each with 4
channels. Channel 0 of Bank 1 is connected to a frequency generator that produces a 1 kHz sine wave
(1 Vpp centered around 0.5V).

d = daqlist("ni")

d=10×4 table
 DeviceID Description Model DeviceInfo
 _______________________ ___________________________________ __________ _______________________

 "Dev1" "National Instruments(TM) USB-6351" "USB-6351" [1×1 daq.ni.DeviceInfo]
 "FD11603-1D3BB09-Bank1" "National Instruments(TM) FD-11603" "FD-11603" [1×1 daq.ni.DeviceInfo]
 "FD11603-1D3BB09-Bank2" "National Instruments(TM) FD-11603" "FD-11603" [1×1 daq.ni.DeviceInfo]
 "FieldDAQ1-Bank1" "National Instruments(TM) FD-11603" "FD-11603" [1×1 daq.ni.DeviceInfo]
 "FieldDAQ1-Bank2" "National Instruments(TM) FD-11603" "FD-11603" [1×1 daq.ni.DeviceInfo]
 "FieldDAQ2-Bank1" "National Instruments(TM) FD-11613" "FD-11613" [1×1 daq.ni.DeviceInfo]
 "FieldDAQ3-Bank1" "National Instruments(TM) FD-11634" "FD-11634" [1×1 daq.ni.DeviceInfo]
 "FieldDAQ3-Bank2" "National Instruments(TM) FD-11634" "FD-11634" [1×1 daq.ni.DeviceInfo]
 "FieldDAQ4-Bank1" "National Instruments(TM) FD-11637" "FD-11637" [1×1 daq.ni.DeviceInfo]
 "FieldDAQ4-Bank2" "National Instruments(TM) FD-11637" "FD-11637" [1×1 daq.ni.DeviceInfo]

Create a DataAcquisition and Add Analog Input Channels

Create a DataAcquisition, set the Rate property (the default is 1000 scans per second), and add
analog input channels using addinput.

dq = daq("ni");
dq.Rate = 20000;
addinput(dq,"FD11603-1D3BB09-Bank1","ai0","Voltage");

Warning: Added channel does not support on-demand operations: only clocked operations are allowed.

Acquire Data For a Specified Duration

Use read to acquire multiple scans, blocking MATLAB execution until all the data requested is
acquired. The acquired data is returned as a timetable with width equal to the number of channels
and height equal to the number of scans.

% Acquire data for one second at 20000 scans per second.
data = read(dq, seconds(1));

Plot the Acquired Data

t = data.Time;
v = data.Variables;
n = 200;
plot(t(1:n), v(1:n));
ylabel("Voltage (V)")

 Acquire Data Using NI FieldDAQ Device

18-157

Acquire Specified Number of Scans

data = read(dq, 200);
plot(data.Time, data.Variables);
ylabel("Voltage (V)")

18 Data Acquisition Toolbox Examples

18-158

 Acquire Data Using NI FieldDAQ Device

18-159

Create an Echometer Using Audio Measurements
This example shows how to create an echometer sonar using audio data acquisition and signal
processing, which can measure distance by determining the time of flight of a sound pulse reflected
off of a surface.

This example employs an approach for post synchronization of audio output and input data
timestamps, which is required for applications where the input signal is in response to the output
and/or when output/input timing correlation is relevant. Example applications include an acoustic
characterization setup or stimulus-response experiments. The relative output/input lag is determined
and corrected using correlation functions in Signal Processing Toolbox.

Requirements

• MATLAB R2020a or later
• Data Acquisition Toolbox
• Data Acquisition Toolbox Support Package for Windows Sound Cards
• Signal Processing Toolbox

Hardware Setup

Running this example requires:

• Focusrite Scarlett 2i2 audio interface device, or another device / sound card with two output and
two input audio channels

• Audio interface device DirectSound drivers provided by the vendor, or using default Windows
device drivers if available

• One powered speaker and one microphone compatible with the audio interface device
• Audio patch cables and connector adaptors

Typical DirectSound audio interface devices supported by Data Acquisition Toolbox do not support
hardware synchronization between the output and input channels. Pairs of audio input or output
channels are synchronized by the audio device, however the output and input channels can have a
non-negligible relative start lag.

To synchronize the output and input data timestamps in post-processing, the following setup can be
used:

• Connect one of the output channels (output 1 or left channel of stereo plug) to one of the input
channels (input 1 or left channel) to generate and acquire a synchronization signal in a loopback
configuration.

• The other output (output 2 or right channel) and input channel (input 2 or right channel) are used
to output an excitation/stimulus signal, and respectively acquire a measurement/response signal.

• Read data from both audio input channels, with one of the channels being used for reading the
synchronization signal, and the other channel for reading the actual response signal.

• With this setup, you read data from both audio input channels, and simultaneously write data to
both audio output channels.

Echometer Sonar

As a demonstration of this approach, you can use an audio device, a powered speaker, and a
microphone to put together an echometer sonar setup. A pulse echometer measures the distance to

18 Data Acquisition Toolbox Examples

18-160

an object by emitting a short sound pulse, measuring the reflected pulse echo, and determining the
time of flight by comparing the original output pulse signal with the measured input response signal.

The speaker and microphone are placed next to each other and oriented toward a wall off of which
the sound pulse reflects, as in the diagram below.

Synthesize a Pulse Signal

A pulse signal typically used for sonar applications is a short duration frequency sweep, or a chirp.
Because the sharp amplitude edges at the beginning and end of a flat chirp signal can cause
measurement artifacts, the pulse is attenuated/shaped by an envelope function. Options include
Hanning, Gaussian, Kaiser, etc. Frequency range, pulse width or duration, pulse envelope/shape
depend on the intended application. In this example the measurements are taken with a 3 ms
duration pulse with a 1-5 kHz linear frequency chirp, and a Hanning window. The synthesized signal
is shown in the figure below. The original chirp signal is shown on the left and the shaped pulse is
shown on the right. The Hanning window is shown as a dotted line.

Make sure to use a signal frequency range that can be properly generated by the speaker, picked up
by the microphone, and sampled by the audio interface device. The sampling rate used for the audio
device measurements is 192 kHz.

% Pulse width (s)
T = 3E-3;

% Sampling rate (Hz)
Fs = 192E+3;

% Initial and final pulse frequency (Hz)
f0 = 1E+3;

 Create an Echometer Using Audio Measurements

18-161

f1 = 5E+3;

% Time vector
t = (0:1/Fs:T)';

% Pulse signal, chirp attenuated by an windowing function
yc = chirp(t,f0,t(end),f1);
w = hanning(numel(t));
y = yc.*w;

% Plot the signal
figure
tileplot = tiledlayout(1,2);
tileplot.TileSpacing = 'compact';
tileplot.Padding = 'compact';

nexttile
plot(t,yc)
hold on
plot(t,w,'--')
xlabel("Time (s)")
ylabel("Amplitude")
title("Original chirp signal and Hanning envelope")

nexttile
plot(t,y)
xlabel("Time (s)")
title("Shaped pulse")

18 Data Acquisition Toolbox Examples

18-162

Data Acquisition

Use two separate DataAcquisition objects, one for the audio output channels and one for the
audio input channels. Since there is no automatic synchronization possible between the audio input
and output channel pairs even if a common DataAcquisition object is used for all channels, this
approach allows for more control over the data acquisition operations.

do = daq("directsound");
addoutput(do,"Audio4","1","Audio");
addoutput(do,"Audio4","2","Audio");
do.Rate = Fs;

di = daq("directsound");
addinput(di,"Audio1","1","Audio");
addinput(di,"Audio1","2","Audio");
di.Rate = Fs;

Since the pulse duration is relatively short, pad the ending of the pulse signal with zero values (200
ms duration) to ensure that the pulse is generated correctly.

yout = [y; zeros(Fs*200E-3,1)];

 Create an Echometer Using Audio Measurements

18-163

Start the input first as a continuous background acquisition, then generate the same signal on both
audio output channels. One of the channels is used as a synchronization signal.

start(di,"continuous")
write(do,[yout yout])
stop(di)

Read the acquired data into the workspace. By default, the read function returns a timetable.

data = read(di,"all");

Plot the acquired data. Signals Audio1_1 and Audio1_2 correspond to the audio input channels 1 and
2. Input channel 1 was used to record the synchronization signal generated by output channel 1 in a
loopback configuration. Input channel 2 was used to record the actual response signal picked by the
microphone. Two pulses are observed in the response signal, followed by other secondary echoes
which depend on the room acoustics. Also notice the large relative start lag time between the input
and output channels.

figure
stackedplot(data)

18 Data Acquisition Toolbox Examples

18-164

Synchronize the Output and Input Data Timestamps

Find the lag and align the output and input signal timestamps by discarding the points before the
detected synchronization signal.

lag = finddelay(y, data.Audio1_1);
t0 = lag/Fs

t0 = 0.3058

alignedData = data(lag+1:end,:);
alignedData.Time = alignedData.Time-alignedData.Time(1);

figure
s = stackedplot(alignedData);
xlim(seconds([0 0.025]))
s.AxesProperties(1).YLimits = [-0.55 0.55];

Visually validate the quality of the time alignment, by comparing the synthetic pulse data with the
measured loopback signal.

 Create an Echometer Using Audio Measurements

18-165

figure
plot(seconds(t),y,alignedData.Time(1:numel(t)),alignedData.Audio1_1(1:numel(t)))
ylabel("Amplitude")
xlabel("Time (s)")
legend(["Pulse signal to output","Measured loopback signal"],"Location","bestoutside")

Determine Pulse Propagation Time and Distance

You can use the xcorr cross-correlation function to determine and visualize similarities between the
original pulse signal and the measured response signal.

[xCorr,lags] = xcorr(alignedData.Audio1_2,y);

figure
plot(lags/Fs,xCorr)
xlabel('Lags (s)')
ylabel('Cross-correlation')
axis tight

18 Data Acquisition Toolbox Examples

18-166

The cross-correlation plot indicates several similarities, with two larger peaks and other smaller
peaks from reverberations.

Find timestamp and total propagation distance corresponding to the first two observed correlated
pulses in the measured signal. The first observed pulse corresponds to the direct propagation path
from the speaker to the microphone. The second observed pulse is the echo pulse reflected by the
wall. The function finddelay returns the lag for which the normalized cross-correlation has the
highest value, and in this case it corresponds to the first pulse in the response signal.

t1 = finddelay(y,alignedData.Audio1_2)/Fs

t1 = 0.0011

You can calculate the propagation time of the echo pulse as the starting timestamp of the second
pulse in the response signal by using finddelay in the signal region after the first pulse.

t2 = t1 + T + finddelay(y,alignedData(timerange(seconds(t1+T),"inf"),:).Audio1_2)/Fs

t2 = 0.0122

% Plot the response signal and highlight the first two detected pulses
figure

 Create an Echometer Using Audio Measurements

18-167

plot(alignedData.Time,alignedData.Audio1_2)
xlim(seconds([0 t2+2*T]))

hold on
firstPulse = alignedData(timerange(seconds(t1),seconds(t1+T)),:);
plot(firstPulse.Time,firstPulse.Audio1_2)

echoPulse = alignedData(timerange(seconds(t2),seconds(t2+T)),:);
plot(echoPulse.Time,echoPulse.Audio1_2)
ylabel("Amplitude")
xlabel("Time (s)")

% Calculate distance corresponding to echo pulse (m)
% Speed of sound in air at 20 deg. C (m/s)
v = 343.1;
d2 = t2*v/2

d2 = 2.1006

18 Data Acquisition Toolbox Examples

18-168

The distance (2.10 m) measured by the echometer sonar setup (half of the total path) is very close to
the actual distance (2.06 m) between the speaker/microphone setup and the wall reflecting the echo
pulse.

 Create an Echometer Using Audio Measurements

18-169

	Introduction to Data Acquisition
	Data Acquisition Toolbox Product Description
	Product Capabilities
	Understanding Data Acquisition Toolbox
	Supported Hardware

	Anatomy of a Data Acquisition Experiment
	System Setup
	Calibration
	Trials

	Data Acquisition System
	Overview
	Data Acquisition Hardware
	Sensors
	Signal Conditioning
	The Computer
	Software

	Analog Input Subsystem
	Function of the Analog Input Subsystem
	Sampling
	Quantization
	Channel Configuration
	Transferring Data from Hardware to System Memory

	Making Quality Measurements
	What Do You Measure?
	Accuracy and Precision
	Noise
	Matching the Sensor Range and A/D Converter Range
	How Fast Should a Signal Be Sampled?

	Selected Bibliography

	Using Data Acquisition Toolbox Software
	Installation Information
	Prerequisites
	Toolbox Installation
	Hardware and Driver Installation

	Access Your Hardware
	Connect to Your Hardware
	Examine Your Hardware Resources
	Acquire Audio Data
	Generate Audio Data
	Acquire and Generate Digital Data

	Introduction to the DataAcquisition Interface
	The DataAcquisition Object
	Get Command-Line Help

	Using the DataAcquisition Interface
	Interface Workflow
	Working a DataAcquisition
	DataAcquisition Interface and Data Acquisition Toolbox

	Digital Input and Output
	Discover Hardware Devices
	Create a DataAcquisition Interface
	Channel Properties
	Get Property Information
	All Channels
	Analog Input and Output Channels
	Other Analog Measurements
	Digital Channels
	Counter Channels
	Audio Channels
	Function Generator Channels

	Support Package Installer
	Install Hardware Support Package for Vendor Support
	Install Support Packages
	Update or Uninstall Support Packages

	Analog Input and Output
	Acquire Data in the Foreground
	Acquire Data from Multiple Channels
	Acquire Data in the Background
	Acquire Bridge Measurements
	Acquire Sound Pressure Data
	Acquire IEPE Data
	Generate Signals in the Foreground
	Generate Signals on Multiple Channels
	Generate Signals in the Background
	Generate Signals in the Background Continuously
	Acquire Data and Generate Signals Simultaneously
	Acquire Data with the Analog Input Recorder
	Generate Signals with the Analog Output Generator

	Analog Devices Active Learning Module
	Analog Devices ADALM1000 Hardware
	Generate and Measure Signals with Analog Devices ADALM1000
	Updated Function Syntax
	Source Voltage and Measure Current
	Generate a Pulse
	Generate Waveforms

	Counter Input and Output
	Analog and Digital Counters
	Acquire Counter Input Data
	Add Counter Input Channel
	Acquire a Single Count
	Acquire a Single Frequency Count
	Acquire Counter Input Data in the Foreground

	Generate Pulse Data on a Counter Channel
	Add Counter Output Channels
	Generate Pulses on a Counter Output Channel

	Digital Operations
	Digital Channels
	Digital Clocked Operations
	Access Digital Subsystem Information

	Acquire Non-Clocked Digital Data
	Acquire Digital Data Using a Shared Clock
	Acquire Digital Data Using an External Clock
	Acquire Digital Data Using a Counter Output Channel as External Clock
	Generate a Clock Using a Counter Output Channel
	Use Counter Clock to Acquire Clocked Digital Data

	Acquire Digital Data Using an External Clock via Chassis PFI Terminal
	Acquire Digital Data in Hexadecimal Values
	Generate Non-Clocked Digital Data
	Generate Digital Output Using Decimal Data Across Multiple Lines
	Generate and Acquire Data on Bidirectional Channels
	Generate Signals on Both Analog and Digital Channels

	Multichannel Audio
	Audio Input and Output
	Multichannel Audio Scan Rate
	Audio Measurement Range
	Acquire Audio Data

	Waveform Function Generation
	Digilent Analog Discovery Devices
	Digilent Function Waveform Generator Channels
	Waveform Types
	Generate a Standard Waveform Using Function Waveform Generator Channels

	Triggers and Clocks
	Trigger Connections
	When to Use Triggers
	External Triggering

	Acquire Voltage Data Using a Digital Trigger
	Clock Connections
	When to Use Clocks
	Import Scan Clock from External Source
	Export Scan Clock to External System

	Synchronization
	Synchronization
	Shared Triggers and Shared Scan Clocks
	Source and Destination Devices
	Automatic Synchronization
	Synchronization Scenarios

	Multiple-Device Synchronization Using USB or PXI Devices
	Acquire Synchronized Data Using USB Devices
	Synchronize Counter Outputs from Multiple Devices
	Synchronize DSA PXI Devices Using AutoSyncDSA
	Acquire Synchronized Data Using PXI Devices

	Synchronize with PFI on CompactDAQ Chassis Without Terminals
	Multiple-Chassis Synchronization with CompactDAQ Devices
	Synchronize DSA Devices
	PXI DSA Devices
	Hardware Restrictions
	PCI DSA Devices
	Synchronize DSA PCI Devices
	Handle Filter Delays with DSA Devices

	Transition Your Code to New Interfaces
	Transition Your Code from Session to DataAcquisition Interface
	Transition Common Workflow Commands
	Acquire Analog Data
	Use Triggers
	Initiate an Operation When Number of Scans Exceeds Specified Value
	Analog Output Generator Code

	Functions
	addbidirectional
	addclock
	addinput
	addoutput
	addtrigger
	binaryVectorToDecimal
	binaryVectorToHex
	daq
	daqhelp
	daqlist
	daqreset
	daqvendorlist
	DataAcquisition
	decimalToBinaryVector
	disableVendorDiagnostics
	enableVendorDiagnostics
	flush
	hexToBinaryVector
	preload
	read
	readwrite
	removechannel
	removeclock
	removetrigger
	resetcounters
	start
	stop
	write

	Apps
	Analog Input Recorder
	Analog Output Generator

	Blocks
	Analog Input
	Analog Output
	Analog Input (Single Sample)
	Analog Output (Single Sample)
	Digital Input (Single Sample)
	Digital Output (Single Sample)

	Troubleshooting Your Hardware
	Troubleshooting Tips
	Find Devices and Create a DataAcquisition Interface
	Is My NI-DAQ Driver Supported?
	Why Doesn’t My NI Hardware Work?
	Why Was My DataAcquisition Deleted?
	Cannot Find Hardware Vendor
	Cannot Find Devices
	What Is a Reserved Hardware Error?
	Network Device Appears Unsupported
	ADC Overrun Error with External Clock
	Cannot Add Clock Connection to PXI Devices
	Cannot Complete Long Foreground Acquisition
	Cannot Use PXI 4461 and 4462 Together
	Cannot Get Correct Scan Rate with Digilent Devices
	Cannot Simultaneously Acquire and Generate with myDAQ Devices
	Simultaneous Analog Input and Output Not Synchronized Correctly
	Counter Single Scan Returns NaN
	External Clock Will Not Trigger Scan
	Why Does My S/PDIF Device Time Out?
	MOTU Device Not Working Correctly

	Contact MathWorks for Technical Support

	Hardware Limitations by Vendor
	Limitations by Vendor
	National Instruments Hardware Limitations
	Digilent Analog Discovery Hardware Limitations
	Measurement Computing Hardware Limitations
	Analog Devices ADALM1000 Limitations
	Examples by Vendor
	Analog Devices ADALM1000 Examples
	Digilent Analog Discovery Hardware Examples
	Measurement Computing Hardware Examples
	National Instruments Hardware Examples
	Getting Started and Device Discovery
	Analog Input and Output
	Digital Input and Output
	Counters and Timers
	Simultaneous and Synchronized Operations
	Simulink Data Acquisition

	Windows Sound Card Examples

	Data Acquisition Toolbox Examples
	Getting Started with NI Devices
	Getting Started with MCC Devices
	Discover NI Devices
	Discover MCC Devices
	Acquire Data Using NI Devices
	Acquire Continuous and Background Data Using NI Devices
	Acquire Data from Multiple Channels using an MCC Device
	Acquire Data From an Accelerometer
	Measure Strain Using an Analog Bridge Sensor
	Acquire Temperature Data From a Thermocouple
	Acquire Temperature Data From an RTD
	Acquire and Analyze Sound Pressure Data From an IEPE Microphone
	Acquire and Analyze Noisy Clock Signals
	Generate Voltage Signals Using NI Devices
	Generate Signals on NI Devices That Output Current
	Generate Continuous and Background Signals Using NI Devices
	Acquire Data and Generate Signals at the Same Time
	Log Analog Input Data to a File Using NI Devices
	Getting Started Acquiring Data with Digilent Analog Discovery
	Getting Started Generating Data with Digilent Analog Discovery
	Acquiring and Generating Data at the Same Time with Digilent Analog Discovery
	Generate Standard Periodic Waveforms Using Digilent Analog Discovery
	Generate Arbitrary Periodic Waveforms Using Digilent Analog Discovery
	Acquire Continuous Audio Data
	Generate Audio Signals
	Generating Multichannel Audio
	Capture Data with Software-Analog Triggering
	Count Pulses on a Digital Signal Using NI Devices
	Measure Frequency Using NI Devices
	Measure Pulse Width Using NI Devices
	Generate Pulse Width Modulated Signals Using NI Devices
	Measure Angular Position with an Incremental Rotary Encoder
	Control Stepper Motor Using Digital Outputs
	Communicate with I2C Devices and Analyze Bus Signals Using Digital IO
	Synchronize NI PCI Devices Using RTSI
	Start a Multi-Trigger Acquisition on an External Event
	Perform Live Acquisition, Signal Processing, and Generation
	Perform Spectral Analysis on Live Data
	Acquire Data from Two Devices at Different Rates
	Characterize an LED with ADALM1000
	Estimate the Transfer Function of a Circuit with ADALM1000
	Create an App for Analog Triggered Data Acquisition
	Create an App for Analog Triggered Data Acquisition by Using Stateflow Charts
	Create an App for Live Data Acquisition
	Acquire Data Using NI FieldDAQ Device
	Create an Echometer Using Audio Measurements

